1. Gromov, V. E., Ivanov, Yu. F., Morozov, K. V., Peregudov, O. A., Popova, N. A., Nikonenko, E. L. Mechanisms of rail hardening during long-term operation [Mekhanizmy uprocheniya relsov pri dlitelnoi ekspluatatsii]. Problemy chernoi metallurgii imaterialovedeniya, 2015,Iss. 4, pp. 98-104. [Electronic resource]: https://www.elibrary.ru/item.asp?id=25017048. Last accessed 12.01.2021.
2. Gromov, V. E., Ivanov, Yu. F., Morozov, K. V., Peregudov, O. A., Alsaraeva, K. V., Popova, N. A., Nikonenko, E. L. Changes in the structure and properties of the surface layers ofrail heads afterlong-term operation [Izmenenie struktury i svoistv poverkhnostnykh sloev golovki relsov posle dlitelnoi ekspluatatsii]. Fundamentalnie problemy sovremennogo materialovedeniya, 2015, Vol. 12, Iss. 2, pp. 203-208. [Electronic resource]: https://www.elibrary.ru/item.asp?id=23613452. Last accessed 12.01.2021.
3. Dobuzhskaya, A. B., Galitsyn, G. A., Syreishchikova, V. I. Study of the structure of rails with different resistance to formation of contact fatigue defects [Issledovanie struktury relsov s raznoi stoikostyu k obrazovaniyu kontaktno-ustalostnykh defektov]. In: Influence of the properties of a metal matrix on operational resistance of rails: Collection of scientific articles of JSC UIM, Yekaterinburg, 2006, pp. 64-81.
4. Markov, D. P. Contact fatigue of wheels and rails [Kontaktnaya ustalost koles i relsov]. Vestnik VNIIZhT, 2001, Iss. 6, pp. 8-14.
5. Akhmetzyanov, M. Kh. About the mechanism of development o f contact fatigue damage in rails [O mekhanizme razvitia kontaktno-ustalostnykh povrezhdenii v relsakh]. Vestnik VNIIZhT, 2003, Iss. 2, pp. 41-45.
6. Kossov, V. S., Krasnov, O. G., Akashev, M. G. Influence of crushing in the area of welded joints on the force effect of rolling stock on the track [Vliyanie smyatiya v zone svarnykh stykov na silovoe vozdeistvie podvizhnogo sostava na put’]. Vestnik VNIIZhT, 2020, Vol. 79, Iss. 1, pp. 35-43. [Electronic resource]: https://www.journalvniizht.ru/jour/article/download/382/293 . Last accessed 12.01.2021.
7. Kossov, V. S., Volokhov, G. M., Krasnov, O. G., Ovechnikov, M. N., Protopopov, A. L., Oguyenko, V. V. Influence of the value of axial loads on the contact fatigue strength of rails [Vliyanie velichiny osevykh nagruzok na kontaktno-ustalostnuyu prochnost’ relsov]. Vestnik VNIIZhT, 2018, Vol. 77, Iss. 3, pp. 149-156. [Electronic resource]: https://www.journal-vniizht.ru/jour/article/view/182. Last accessed 12.01.2021.
8. Meggiolaro, M. A., Pinho de Castro, J. T., Hao Wu. Invariant-based and Critical-plane Rainflow Approaches for Fatigue Life Prediction Under Multiaxial Variable Amplitude Loading. 3rd International Conference on Material and Component Performance under Variable Amplitude Loading (VAL 2015), Prague, March 23-26, 2015. Procedia Engineering, Vol. 101, pp. 69-76.
9. Sakalo, A. V. Mathematical modelling of contact stresses of fragments on an elastic foundation using finite element models. Ph.D. (Eng) thesis [Matematicheskoe modelirovanie kontaktnykh napryazhenii fragmentov na uprugom osnovanii s ispolzovaniem konechno-elementnykh modelei. Dis… na soisk. uch. step. kand. tekh. nauk]. Bryansk State Technical University, Bryansk, 2009, 143 p.
10. Manson, S. S. Fatigue: A complex subject - some simple approximation. Experimental Mechanics, 1965, Vol. 5, pp. 193-226.
11. Brown, M., Miller, K. J. Theory for fatigue under multiaxial stress-strain conditions. Proceedings of the Institution of Mechanical Engineers, 1973, Vol. 187, No. 65, pp. 745-756.
12. Shamsaei, N., Fatemi, A., Socie, D. F. Multiaxial fatigue evaluation using discriminating strain paths. International Journal of Fatigue, 2011, Vol. 33, No. 4, pp. 597-609. https://doi.org/10.1016/j.ijfatigue.2010.11.002.
13. Smith, R. N., Watson, P., Topper, T. H. A stressstrain parameter for the fatigue of metals. Journal of Materials Science, 1970, Vol. 5, No. 4, pp. 767-778.
14. Gorokhov, V. A. Numerical modelling of elastoplastic modeling ofstructures made ofstainlesssteels and graphites under quasi-static thermo-radiation loading. Ph.D. (Physics and Mathematics) thesis [Chislennoe modelirovanie uprugoplasticheskogo modelirovaniya konstruktsii iz nerzhaveyushchikh stalei i grafitov pri kvazistaticheskom termoradiatsionnom nagruzhenii. Dis… kand. fiz-mat nauk]. Nizhny Novgorod, 2007, 113 p. [Electronic resource]: http://www.unn.ru/pages/disser/209.pdf. Last accessed 12.01.2021.
15. Kossov, V. S., Krasnov, O. G., Oguenko, V. N. Improving reliability of rails during operation at low temperatures [Povyshenie nadezhnnosti relsov pri ekspluatatsii v usloviyakh nizkikh temperatur]. Proceedings of XVI International scientific and technical conference (readings in memory of prof. G. M. Shakhunyants) «Modern problems of design, construction and operation of a railway track». Section 2. Railway track for high speed traffic and high axle loads. Moscow, 2019, pp. 82-87.
16. Collins, J. Failure of materials in mechanical design: analysis, prediction, prevention [Russian title: Povrezhdenie materialov v konstruktsiyakh]. Transl. from English. Mir publ., 1984, 624 p.
17. Ramberg, W., Osgood, W. R. Description of Stress Strain Curves by Three Parameters. National Advisory Committee forAeronautics, Technical Note No. 902, 1943. [Electronic resource]: http://www.apesolutions.com/spd/public/NACA-TN902.pdf. Last accessed 12.01.2021.
18. Burago, N. G., Zhuravlev, A. B., Nikitin, I. S. Models of multiaxial fatigue fracture and assessment of durability of structural elements [Modeli mnogoosnogo ustalostnogo razrusheniya i otsenka dolgovechnosti elementov konstruktsii]. Izvestiya RAN. Rigid body mechanics, 2011, Iss. 6, pp. 22-33. [Electronic resource]: https://www.elibrary.ru/item.asp?id=17232791. Last accessed 12.01.2021.
19. Troschenko, V. T., Khamaza, L. A. Deformation curves of fatigue of steels and methods for determining their parameters [Deformatsionnie krivie ustalosti stalei i metody opredeleniya ikh parametrov]. Problemy prochnosti, 2010, Iss. 6, pp. 26-39.