INTELLIGENT NAVIGATION: GLONASS AND COORDINATE MODELS
Abstract
The article is devoted to further elaboration of theory fundamentals and algorithms of railway intelligent navigation on the basis of GLONASS global satellite system and standard coordinate models of tracks. The models can be used to monitor geometry of track as well as to control and navigate scheduled trains. Flows of synchronized measuring inertial data are adapted to standard model. In order to fulfil navigation functions the emphasis is put on motion trajectories simulated by linear metric graphs. The article sequentially analyzes structural and stage-by-stage features of simulation models and current and long-term research tasks referring the subject under the study.
About the Author
S. I. MatveevRussian Federation
D. Sc. (Tech), professor, head of the department of geodesy, geoinformatics and navigation
References
1. Альберт А. Регрессия, псевдообращение и рекуррентное оценивание. – М.: Наука, 1977. – 221 с. Albert A. Regression, And The Moor-Penrose Pseudoinvers [Russian title: Regressiya, psevdoobraschenie i rekurrentnoe otsenivanie]. Moscow, Nauka publ., 1977, 221 p.
2. Воеводин В. В., Кузнецов Ю. А. Матрицы и вычисления. М.: Наука, 1984. – 320 с. Voevodin V. V., Kuznetsov Yu.A. Matrix and computation [Matritsy i vychisleniya]. Moscow, Nauka publ., 1984, 320 p.
3. Грооп Д. Методы идентификации систем. – М.: Мир, 1979. – 302 с. Graupe, Daniel.Identification of Systems[Russian title: Metody identifikatsii system].Moscow,Mir publ., 1979. 302 p.
4. Зыков А. А. Основы теории графов. – М.: Вузовская книга, 2004. – 664 с. Zykov A. A. Fundamentals of graph theory [Osnovy teorii grafov]. Moscow, Vuzovskaya kniga publ., 2004. 664 p.
5. Лёвин Б. А., Круглов В. М., Матвеев С. И. и др. Геоинформатика транспорта. – М.: ВИНИТИ РАН, 2006. – 336 с. Lievin B. A., Kruglov V. M., Matveev S. I. et al. Geoinformatics of transport [Geoinformatika transporta]. Moscow, VINITI RAN, 2006, 336 p.
6. Лоусон Ч., Хенсон Р. Численное решение задач метода наименьших квадратов. – М.: Наука, 1986. – 232 с. Lawson, Charles L., Hanson, Richard J. Solving Least Squares Problems [Russian title: Chislennoe reshenie zadach metoda naimen’shih kvadratov]. Moscow, Nauka publ., 1986, 232 p.
7. Матвеев С. И. Геометрия группового уравнивания // Геодезия и картография. – 1997. – № 10. – С. 13–16. Matveev S. I. Geometry of adjustment by groups [Geometriya gruppovogo uravnivaniya]. Geodeziya i kartografiya, 1997, № 10, pp.13–16.
8. Матвеев С. И., Коугия В. А. Высокоточные цифровые модели пути и спутниковая навигация железнодорожного транспорта. – М.: Маршрут, 2005. – 290 с. Matveev S. I., Kougiya V. A. High-precision digital models of track and satellite navigation of railways [Vysokotochnye tsifrovye modeli puti i sputnikovaya navigatsiya zheleznodorozhnogo transporta]. Moscow, Marshrut publ., 2005, 290 p.
9. Матвеев С. И., Розенберг И. Н. Графы и навигация. – М.: ВИНИТИ РАН, 2011. – 196 с. Matveev S. I., Rozenberg I. N. Graphs and navigation [Grafy i navigatsiya]. Moscow, VINITI RAN, 2011, 196 p.
10. Тертычный-Даури В. Ю. Адаптивная механика – 2-е изд., перераб. и доп. – М.: Факториал Пресс, 2003. – 464 с. Tertychnyj-Dauri V. Yu. Adaptive mechanics [Adaptivnaya mehanika]. 2d ed., rev. and enlarg. Moscow, Faktorial Press publ., 2003, 464 p.
Review
For citations:
Matveev S.I. INTELLIGENT NAVIGATION: GLONASS AND COORDINATE MODELS. World of Transport and Transportation. 2013;(4):20-27. (In Russ.)