Increasing Service Life of a Railway Wheel with Surface Hardening Technology
https://doi.org/10.30932/1992-3252-2021-19-1-48-59
Abstract
The article presents surface hardening technology as applied to solid-rolled wheels of rolling stock. The obtained results of the theoretical study on the process of strengthening the metal of the wheel will make it possible to develop scientifically grounded technological and technical solutions to prevent formation and development of defects on the rolling surface, as well as to eliminate them during maintenance.
The objective of this work is to identify the optimal method for surface hardening of a railway wheel with defects.
At present, the issue of extending service life of elements and critical parts of rolling stock is becoming increasingly acute. Due to the limited economic feasibility and limited availability of existing production technologies, it becomes necessary to create a new material modified with nanoclusters and hardened with surfactants.
Nanoclusters have high plasticity and hardness values. To determine the hardness value of nanomaterials, the Vickers hardness test method is used, in which hardness is determined by the size of the area of the indentation after removing the load from the pyramid shaped diamond.
Superplasticity is observed in nanostructures. For nickel and nickel-aluminium alloy NiAl3, low-temperature superplasticity is observed in the temperature range 450–470°C, which is three times lower than their melting point.
About the Author
T. G. BunkovaRussian Federation
Bunkova, Tamara G. – Senior Lecturer at the Department of Wagons and Wagon Facilities, Engineer at the Department of Transport Mechanical Engineering Technology and Rolling Stock Repairs
Omsk
References
1. Grigoriev, S. N., Gribkov, A. A., Alyoshin, S. V. Techn ol ogie s o f nanoprocessing [Tekhnologii nanoobrabotki]. Stary Oskol, TNT publ., 2008, 242 p. [Electronic resource]: http://msi.ulstu.ru/files/%D0%93%D1%80%D0%B8%D0%B3%D0%BE%D1%80%D1%8C%D0%B5%D0%B2%20%D0%A1.%D0%9D.%20%D0%A2%D0%B5%D1%85%D0%BD%D0%BE%D0%BB%D0%BE%D0%B3%D0%B8%D0%B8%20%D0%BD%D0%B0%D0%BD%D0%BE%D0%BE%D0%B1%D1%80%D0%B0%D0%B1%D0%BE%D1%82%D0%BA%D0%B8.pdf. Last accessed 12.01.2021.
2. Zhabrev, V. A., Margolin, V. I., Pavelyev, V. S. Introduction to nanotechnology (General information, concepts, and definitions) [Vvedenie v nanotekhnologiyu (Obshchie svedeniya, ponyatiya i opredeleniya)]. Samara, SSAU publ., 2007, 172 p. [Electronic resource]: http://repo.ssau.ru/bitstream/Uchebnye-posobiya/Vvedenie-v-nanotehnologiu-obshie-svedeniyaponyatiya-i-opredeleniya-Elektronnyi-resurs-uchebposobie-54393/1/%d0%96%d0%b0%d0%b1%d1%80%d0%b5%d0%b5%d0%b2%20%d0%92.%d0%90.%20%d0%92%d0%b2%d0%b5%d0%b4%d0%b5%d0%bd%d0%b8%d0%b5%20%d0%b2%20%d0%bd%d0%b0%d0%bd%d0%be%d1%82%d0%b5%d1%85%d0%bd%d0%be%d0%bb%d0%be%d0%b3%d0%b8%d1%8e.pdf. Last accessed 12.01.2021.
3. Kirchanov,V. S. Nanomaterials and nanotechnologies [Nanomaterialy i nanotekhnologii]. Perm, Publishing house of Perm National Research Polytechnic University, 2016, 193 p. [Electronic resource]: https://pstu.ru/files/2/file/kafedra/fpmm/of/Nanomateriali_i_nanotehnologii_bak.pdf. Last accessed 12.01.2021.
4. Tsikunov, A. E. Study of defects in the rims of railway wheels. Minsk, Flame, 1966, 48 p.
5. Asplund, M., Palo, M., Famurewa, S. [et al]. A study of railway wheel profil parameters used as indicators of an increased risk of wheel defects. Proc. Inst. Mech. Eng., Part F: J. Rail Rapid Transit, 2016, Vol. 230 (2), pp. 323–334.
6. Alekhin, V. P. Physics of strength and plasticity of surface layers of materials [Fizika prochnosti i plastichnosti poverkhnostnykh sloev materialov]. Moscow, Nauka publ., 1983, 280 p.
7. Alekhin, V. P. Physical laws of microplastic deformation of surface layers of materials and obtaining nanocrystal line state [Fizicheskie zakonomernosti mikroplasticheskoi deformatsii poverkhnostnykh sloev materialov i polucheniya nanokristalicheskogo sostoyaniya]. Mechanical engineering technologies 04: Proceedings of plenary reports of 4th International Congress (Varna, Bulgaria, September 2004), pp. 12–19.
8. Gubkin, S. I. Plastic deformation of metals [Plasticheskaya deformatsiya metallov]. Moscow, Metallurgizdat publ., 1960, 265 p.
9. Nagornov, Yu. S. 101 question of nanotechnology [101 vopros nanotekhnologii]. Togliatti, TSU publ., 2012, 110 p. [Electronic resource]: http://window.edu.ru/resource/126/80126/files/nagornov_nano_101.pdf. Last accessed 12.01.2021.
10. Novikov, L. S., Voronina, E. N. Prospects for the use of nanomaterials in space technology [Perspektivy primeneniya nanomaterialov v kosmicheskoi tekhnike]. Moscow, Universitetskaya kniga publ., 2008, 188 p. [Electronic resource]: http://eb.arsu.kz:81/pdf/foreign/%D0%9D%D0%BE%D0%B2%D0%B8%D0%BA%D0%BE%D0%B2_%D0%92%D0%BE%D1%80%D0%BE%D0%BD%D0%B8%D0%BD%D0%B0_perspektivy_primeneniya_nanomateria.pdf. Last accessed 12.01.2021.
11. Kirchanov, V. S. Physical foundations of nanotechnology photonics and option formatics [Fizicheskie osnovy nanotekhnologii fotoniki i optoinformatiki]. Perm, Publishing house of Perm National Research Polytechnic University, 2020, 268 p. [Electronic resource]: https://pstu.ru/files/2/file/kafedra/fpmm/of/Fizicheskie_osnovi_nanotehnologiyi_fotoniki_i_optoinformatiki_mag.pdf. Last accessed 12.01.2021.
12. Alekhin, V. P., Alekhin, O. V. Nanotechnology of surface hardening and finishing of parts made o fstructural and tool steel [Nanotekhnologiya poverkhnostnoi uprochnyayushchei i finishnoi obrabotki detalei iz konstruktsionnykh iinstrumentalnykh stalei]. Mashinostroenie i inzhenernoe obrazovanie, 2007, Iss. 4, pp. 2–13. [Electronic resource]: https://www.elibrary.ru/item.asp?id=12051704. Last accessed 12.01.2021.
13. Liu, Sen Hui; Li, Cheng-Xin; Li, Lu; Huang, JiaHua; Xu, Pan; Hu, Ying-Zhen; Yang, Guan-Jun; Li, Chang-Jiu. Development of long laminar plasma jet on thermal spraying process: microstructures of zirconia coatings. Surface and Coatings Technology, 2018, Vol. 337, pp. 241–249. 2018. DOI: 10.1016/j.surfcoat.2018.01.003.
14. Xiang, Yong; Yu, Deping; Liu, Fangyuan; Lv, Cheng; Yao, Jin. Determining the heat flux distribution of laminar plasma jet impinging upon a flat surface: an indirect method using surface transformation hardening. International Journal of Heat and Mass Transfer, 2018, Vol. 118, pp. 879–889. DOI: 10.1016/j.ijheatmasstransfer.2017.11.050.
15. Alekhin, V. P., Alekhin, O. V. Physical laws of microplastic deformation of surface layers of materials [Fizicheskie zakonomernosti mikroplasticheskoi deformatsii poverkhnostnykh sloev materialov]. Deformatsiya irazrushenie materialov, 2005,Iss. 9, pp. 24–31. [Electronic resource]: https://www.elibrary.ru/item.asp?id=12000469. Last accessed 12.01.2021.
Review
For citations:
Bunkova T.G. Increasing Service Life of a Railway Wheel with Surface Hardening Technology. World of Transport and Transportation. 2021;19(1):48-59. https://doi.org/10.30932/1992-3252-2021-19-1-48-59