Preview

World of Transport and Transportation

Advanced search

Building Architecture of Intelligent Control System for Urban Rail Transit System

https://doi.org/10.30932/1992-3252-2021-19-1-18-46

Abstract

The increase in the volume of passenger transportation in megalopolises and large urban agglomerations is efficiently provided by the integration of urban public transit systems and city railways. Traffic management under those conditions requires creating intelligent centralised multi-level traffic control systems that implement the required indicators of quality, comfort, and traffic safety regarding passenger transportation. Besides, modern control systems contribute to traction power saving, are foundation and integral part of the systems of digitalisation of urban transit and the cities. Building systems solving the traffic planning and control tasks is implemented using algorithms based on the methods of artificial intelligence, principles of hierarchically structured centralised systems, opportunities provided by Big Data technology. Under those conditions it is necessary to consider growing requirements towards software as well as theoretical design and practical implementation of network organisation.

This article discusses designing architecture and shaping requirements for developed applications and their integration with databases to create a centralised intelligent control system for the urban rail transit system (CICS URTS). The article proposes the original architecture of the network, routing of information flows and software of CICS URTS. The routing design is based on a fully connected network. This allows to significantly increase the network bandwidth and meet the requirements regarding information protection, since information flows are formed based on the same type of protocols, which prevents emergence of covert transmission channels. The implementation of the core using full connectivity allows, according to the tags of information flows, to pre-form the routes for exchange of information between servers and applications deployed in CICS URTS. The use of encrypted tags of information flows makes it much more difficult to carry out attacks and organise collection of information about the network structure.

Platforms for development of intelligent control systems (ICS), which include CICS URTS, high computing power, data storage capacity and new frameworks are becoming more available for researchers and developers and allow rapid development of ICS. The article discusses the issues of interaction of applications with databases through a combination of several approaches used in the field of Big Data, substantiates combination of Internet of Things (IoT) methodology and microservice architecture. This combination will make it possible to single out business processes in the system and form streaming data processing requiring operational analysis by a human, which is shown by relevant examples.

Thus, the objective of the article is to formalise the principles of organising data exchange between CICS URTS and automated control systems (ACS) of railway companies (in our case, using the example of JSC Russian Railways), URTS services providers, and city government bodies, implement the developed approaches into the architecture of CICS URTS and formalise principles of organisation of microservice architecture of CICS URTS software. The main research methods are graph theory, Big Data and IoT methods.

About the Authors

V. M. Alexeev
Russian University of Transport
Russian Federation

Alexeev, Victor M. – D.Sc. (Eng), Professor at the Department of Information Control and Protection

Moscow



L. A. Baranov
Russian University of Transport
Russian Federation

Baranov, Leonid A. – D.Sc. (Eng), Professor, Head of the Department of Information Control and Protection

Moscow



M. A. Kulagin
Railway Research Institute
Russian Federation

Kulagin, Maxim A. – Deputy Head of the Technological Information Systems’ Development Unit

Moscow



V. G. Sidorenko
Russian University of Transport
Russian Federation

Sidorenko, Valentina G. – D.Sc. (Eng), Professor at the Department of Information Control and Protection

Moscow



References

1. Vakulenko, S. P., Romensky, D. Yu., Mnatsakanov, V. A., Dorokhov, A. V., Vlasov, D. N. Development of options for modernisation of Moscow monorail transit system [Razrabotka variantov modernizatsii Moskovskoi moorelsovoi transportnoi sistemy]. Metro i tonneli, 2020, Iss. 4, pp. 28–36. [Electronic resource]: https://hutor.info/wp-content/uploads/2020/12/2_5332278966877161853. pdf. Last accessed 14.02.2021.

2. Shevlyugin, M. V., Korolev, A. A., Golitsyna, A. E., Pletnev, D. S. Electric stock digital twin in a subway traction power system. Russian Electrical Engineering, 2019, Vol. 90, Iss. 9, pp. 647–652. DOI: 10.3103/S1068371219090098. Last accessed 14.02.2021.

3. Pavlovsky, A. A., Okhotnikov, A. L. Information transport situation [Informatsionnaya transportnaya situatsiya]. Nauka i tekhnologii zheleznykh dorog, 2018, Vol. 2, Iss. 6, pp. 16–24. [Electronic resource]: http://www.vniias.ru/images/img/online_journal/pdf/02_2018/2_2018.pdf. Last accessed 14.02.2021.

4. Atroshchenko V. A., Rudenko M. V., Dyachenko R. A., Bagdasaryan R. Kh. On the issue of assessing the reliability of information to prevent mitm attacks when transmitting classified information through open communication channels [K voprosu otsenki dostovernosti informatsii dlya predotvrashcheniya mitm-ataki pri peredachi zakrytoi informatsii po otkrytym kanalam svyazi]. Sovremennie problemy nauki i obrazovaniya, 2013, Iss. 3, pp. 82–82. [Electronic resource]: https://science-education.ru/pdf/2013/3/375.pdf. Last accessed 14.02.2021.

5. Sudhir, Udipi. The event data management problem: getting the most from network detection and response. Network Security, January 2021, Vol. 2021, Iss. 1, pр. 12–14. DOI: https://doi.org/10.1016/S1353-4858(21)00008-8.

6. Halpin, T., Morgan, T. Information Modelling and Relational Databases (Second Edition). The Morgan Kaufmann Series in Data Management Systems 2008, 976 p. DOI: 10.1016/B978-0-12-373568-3.X5001-2.

7. Yue, Zeng; Ye, Baoliu; Tang, Bin; Guo, Songtao; Qu, Zhihao. Scheduling coflows of multi-stage jobs under network resource constraints. Computer Networks, January 12, 2021, Vol. 184, pp. 107686. DOI: 10.1016/j.comnet.2020.107686.

8. Wenstrom, M. Managing Cisco Network Security First Edition. Moscow, Publishing house Williams, 2005, 768 p.

9. Kharitonova, E. V. Graphs and networks [Grafy i seti]. Ulyanovsk, UlGTU publ., 2006, 92 p. [Electronic resource]: https://www.studmed.ru/haritonova-ev-grafyi-seti_9d47b8a399b.html. Last accessed 14.02.2021.

10. Kuzyukov, V. A., Novikov, V. G., Safronov, A. I. Microprocessor control systems for movement of trains in Moscow metro [Mikroprotsessornie sistemy upravleniya dvizheniem poezdov v Moskovskom metropolitene]. Avtomatika na transporte, 2020, Vol. 6, Iss. 3, pp. 268–293. [Electronic resource]: https://cyberleninka.ru/article/n/mikroprotsessornye-sistemy-upravleniya-dvizheniempoezdov-v-moskovskom-metropolitene/pdf. Last accessed 14.02.2021.

11. Devyanin, P. N. Models of safety of computer systems [Modeli bezopasnosti kompyuternykh sistem]. Moscow, Goryachaya liniya-Telecom publ., 2018, 338 p.

12. Zhang, Shunliang; Zhu, Dali. Towards artificial intelligence enabled 6G: State of the art, challenges, and opportunities. Computer Networks, December 24, Vol. 183, pp. 107556. DOI: 10.1016/j.comnet.2020.107556.

13. Mei, Lifan; Hu, Runchen; Cao, Houwei; Liu, Yong; Han, Zifa; Li, Feng; Li, Jin. Realtime Mobile Bandwidth Prediction Using LSTM Neural Network. In: Choffnes D., Barcellos M. (eds) Passive and Active Measurement. PAM 2019. Lecture Notes in Computer Science, Vol. 11419. Springer, Cham. https://doi.org/10.1007/978-3-030-15986-3_3.

14. Kalipe, G. K., Behera, R. K. Big Data Architectures: A detailed and application-oriented review. Int. Journal Innov. Technol. Explor. Eng., 2019, Vol. 8, pp. 2182–2190. [Electronic resource]: https://www.researchgate.net/profile/Rajat-Behera/publication/336915402_Big_Data_Architectures_A_detailed_and_application_oriented_review/links/5dba7a2e4585151435d62a79/Big-DataArchitectures-A-detailed-and-application-orientedreview.pdf. Last accessed 14.02.2021.

15. Thurner, T. Big Data Europe for Smart, Green and Integrated Transport [Electronic resource]: https://www.w3.org/community/bde-transport/files/2015/11/Big-Data-for-Smart-Green-andIntegrated-Transport-Workshop-Final-Report.pdf. Last accessed 14.02.2021.

16. Avdeeva, I. L. Analysis of foreign experience in the use of global technologies «Big Data» [Analiz zarubezhnogo opyta ispolzovaniya globalnykh tekhnologii «Big Data»]. Internet journal «Naukovedenie», 2016, Vol. 8, Iss. 6, pp. 1–11. [Electronic resource]: http://naukovedenie.ru/PDF/13EVN616.pdf. Last accessed 14.02.2021.

17. Bik, R. Application of Big Data in transport planning [Primenenie Big Data v transportnom planirovanii]. [Electronic resource]: https://transport.mos.ru/common/upload/docs/1500293313_Moovit_Moscow_International_Transport_Expert_Council_R.pdf. Last accessed 14.02.2021.

18. Big Data technology in transport. How big data has become a valuable asset in transportation. Domestic DBMS Tarantool in a big data analytics project [Tekhnologiya Big Data na transporte. Kak na transporte bolshie Dannie prevratilis v tsenniy aktiv. Otechestvennaya SUBD Tarantool v proekte analitiki bolshikh dannykh]. [Electronic resource]: https://tygeza.ru/tehnologiya-bigdata-na-transporte-kak-na-transporte-bolshie-dannye.html. Last accessed 14.02.2021.

19. O’Connor, R. V., Elger, P., Clarke, P. M. Continuous software engineering – A microservices architecture perspective. Journal of Software: Evolution and Process, 2017, Vol. 29, Iss. 11, pp. e1866. [Electronic resource]: https://www.researchgate.net/profile/RoryOconnor-4/publication/316009873_Continuous_software_engineering-A_microservices_architecture_perspective/links/5a26bc4e4585155dd423eecc/Continuous-software-engineering-A-microservicesarchitecture-perspective.pdf. Last accessed 14.02.2021. DOI: 10.1002/smr.1866.

20. Boicea,A., Radulescu, F.,Agapin, L. I. MongoDB vs Oracle-database comparison. 2012 3rd International Conference on Emerging Intelligent Data and Web Technologies. IEEE, 2012, pp. 330–335. [Electronic resource]: https://www.researchgate.net/profile/Alexandru-Boicea/publication/261040647_MongoDB_vs_Oracle_--_Database_Comparison/links/55c2132b08aebc967defd053/MongoDB-vs-Oracle--Database-Comparison.pdf. Last accessed 14.02.2021. DOI: 10.1109/EIDWT.2012.32.

21. CouchDB. Apache CouchDB. [Electronic resource]: https://couchdb.apache.org. Last accessed 14.02.2021.

22. Vora, M. N. Hadoop-HBase for large-scale data. Proceedings of 2011 International Conference on Computer Science and Network Technology. IEEE, 2011, Vol. 1,pp. 601–605. DOI: 10.1109/ICCSNT.2011.6182030.

23. Shvachko, K., Kuang, H., Radia, S., Chansler, R. The Hadoop Distributed File System. 2010 IEEE 26th symposium on mass storage systems and technologies (MSST). IEEE, 2010, pp. 1–10. DOI: https://doi.org/10.1109/MSST.2010.5496972.

24. Kim, S.-S., Lee, W.-R., Go, J.-H. A Study on Utilization of Spatial Information in Heterogeneous System Based on Apache NiFi. 2019 International Conference on Information and Communication Technology Convergence (ICTC). IEEE, 2019, pp. 1117– 1119. DOI: 10.1109/ICTC46691.2019.8939734.

25. Venner, J.,Wadkar, Sameer; Siddalingaiah,Madhu. ProApache Hadoop. Apress,Berkeley, CA, 2014, pp. 399– 401. DOI: 10.1007/978-1-4302-4864-4_9.

26. Hunt, P., Konar, M., Junqueira, F. P., Reed, B. ZooKeeper: Wait-free Coordination for Internet-scale Systems. USENIX annual technical conference, 2010, Vol. 8,Iss. 9, pp. 1–14. [Electronic resource]: https://www.usenix.org/legacy/events/atc10/tech/full_papers/Hunt.pdf. Last accessed 14.02.2021.

27. Gupta, M., Patwa, F., Sandhu, R. An Attribute Based Access Control Model for Secure Big Data Processing in Hadoop Ecosystem. Proceedings of the Third ACM Workshop on Attribute-Based Access Control, 2018, pp. 13–24. [Electronic resource]: https://www.researchgate.net/profile/Maanak-Gupta/publication/323785048_An_Attribute-Based_Access_Control_Model_for_Secure_Big_Data_Processing_in_Hadoop_Ecosystem/links/5ab0253b0f7e9b4897c1d52b/An-Attribute-Based-Access-Control-Model-for-SecureBig-Data-Processing-in-Hadoop-Ecosystem.pdf. Last accessed 14.02.2021. DOI: 10.1145/3180457.3180463.

28. Wang, Guozhang; Koshy, Joel; Subramanian, Sriram; Paramasivam, Kartik; Zadeh, Mammad; Narkhede, Neha; Rao, Jun; Kreps, Jay; Stein, Joe. Building a replicated logging system with Apache Kafka. Proceedings of the VLDB Endowment, 2015, Vol. 8, Iss. 12, pp. 1654–1655. DOI: 10.14778/2824032.2824063.

29. Singh, P. Airflow. Learn PySpark. Apress,Berkeley, CA, 2019, pp. 67–84. [Electronic resource]: https://link.springer.com/content/pdf/10.1007%2F978-1-4842-4961-1.pdf. Last accessed 14.02.2021.

30. Akhtar, S., Magham, R. Using Phoenix. Pro Apache Phoenix. Apress, Berkeley, CA, 2017, pp. 15–35. [Electronic resource]: https://link.springer.com/content/pdf/10.1007%2F978-1-4842-2370-3.pdf. Last accessed 14.02.2021.

31. Condie, T., Conway, N.,Alvaro, P., Hellerstein, J., Elmeleegy, K., Sears, R. MapReduce Online. Conference: Proceedings of the 7th USENIX Symposium on Networked Systems Design and Implementation, NSDI 2010, San Jose, CA, USA, April 28–30, 2010, Vol. 10, Iss. 4, pp. 313–328. [Electronic resource]: https://www.usenix.org/legacy/events/nsdi10/tech/full_papers/condie.pdf. Last accessed 14.02.2021.

32. Cheng, Yanzhe; Liu, Fang; Jing, Shan; Xu, Weijia; Chau, Duen Horng. Building Big Data Processing and Visualization Pipeline through Apache Zeppelin. PEARC’18: Proceedings of the Practice and Experience on Advanced Research Computing, 2018, pp. 1–7. DOI: 10.1145/3219104.3229288.

33. Zaharia, M. [et al]. Apache spark: a unified engine for big data processing. Communications of the ACM 59.11, 2016, pp. 56–65. DOI: 10.1145/2934664.

34. Baranov, L. A. Balakina, E. P., Erofeev, E. V., Sidorenko, V. G. Multifunctional models of control systems [Mnogofunktsionalnie modeli sistem upravleniya]. Izvestiya vysshykh uchebnykh zavedenii. Problemy poligrafii i izdatelskogo dela, 2012, Iss. 2, pp. 79–82. [Electronic resource]: https://publications.hse.ru/mirror/pubs/share/folder/54otctuizr/direct/118351222.pdf. Last accessed 14.02.2021.

35. Sidorenko, V. G., Zhuo, M. A. Investigation of the possibility of applying genetic algorithms to solving problems of planning operation of metro electric rolling stock [Issledovanie vozmozhnosti primeneniya geneticheskikh algoritmov k resheniyu zadach planirovaniya raboty elektropodvizhnogo sostava metropolitena]. Elektronika i elektrooborudovanie transporta, 2017, Iss. 6, pp. 37–40. [Electronic resource]: https://publications.hse.ru/mirror/pubs/share/direct/213900236.pdf. Last accessed 14.02.2021.

36. Kulba,V. V.,Kovalevsky, S. S., Kosyachenko, S. A., Kuznetsov, N. A. Methods of analysis and synthesis of modularin formation and control systems [Metody analiza i sinteza modulnykh informatsionno-upravlyayushchikh sistem]. Moscow, Fizmatlit publ., 2002, 800 p. [Electronic resource]: http://bookfi.net/book/1471957. Last accessed 14.02.2021.

37. Kharin, O. V., Yakimov, S. M., Kulagin, M. A., Gonik, M. M., Khludeev, M. A., Yaroshchuk, D. I. Automated system trusted environment of the locomotive complex (2019). Certificate ofregistration of the computer programRU2020613754, 23.03.2020 [Avtomatizirovannaya Sistema doverennaya sreda dlya lokomotivnogo kompleksa (2019). Svidetelstvo o registratsii programmy dlya EVM RU 2020613754, 23.03.2020]. [Electronic resource]: https://www.elibrary.ru/item.asp?id=42709956. Last accessed 14.02.2021.


Review

For citations:


Alexeev V.M., Baranov L.A., Kulagin M.A., Sidorenko V.G. Building Architecture of Intelligent Control System for Urban Rail Transit System. World of Transport and Transportation. 2021;19(1):18-46. https://doi.org/10.30932/1992-3252-2021-19-1-18-46

Views: 598


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1992-3252 (Print)