On the Issue of Determining Relative Rail Rolling Contact Fatigue Damageability
https://doi.org/10.30932/1992-3252-2021-19-1-06-17
Abstract
Adoption of heavy haul traffic on many railroads, comprising Russian railways, has highlighted the relevance of assessing the effect of increased axial loads on the contact fatigue life of rails.
The article describes a set of theoretical studies carried out to create a scientifically substantiated method for predicting the contact fatigue life of rails depending on the values of axial loads. The stress-strain state of the contact area has been determined using the finite element model of wheel rolling on a rail. It has been found that the wheel-rail rolling contact area undergoes complex multiaxial loading with the simultaneous action of normal and shear strains. Based on the analysis of models describing multiaxial fatigue damage, the Brown–Miller model was chosen, which considers the simultaneous action of normal strains at the contact area and of maximum shear strains, which most fully describes the stress-strain state of the wheel-rail rolling contact area. To apply the Brown–Miller model, fatigue stress-strain curves for rail steel have been identified. Based on the analysis of methods for determining the parameters of stress-strain curves carried out by V. A. Troschenko, a modified Roessle– Fatemi hardness method has been applied. Based on the experimentally determined values of hardness on the rolling surface, the parameters of the curves of elastic and plastic fatigue have been revealed by calculation and experiment. To establish the damaging effect of the load from wheel rolling on a rail, the concept of relative damage per rolling cycle had been assumed which is the value inverse to the number of cycles preceding formation of a contact-fatigue crack at a given value of the axial load.
Calculations of the relative damage rate of the rolling surface of rails caused by contact fatigue defects were carried out with the Fatigue software package considering mean values of the indicators of the degree of fatigue strength and plasticity of rail steel and the calculated stresses in the wheel-rail contact area, as well as the plasticity correction using Neuber method. The polynomial dependence of relative damageability of the rolling surface of rails is obtained. The established functional dependence of relative damageability of the rolling surface of rails on the values of vertical forces can be used as the basis for the developed methodology for predicting the contact fatigue life of rails.
About the Authors
V. S. KossovRussian Federation
Kossov, Valery S. – D.Sc. (Eng), Professor, General Director
Kolomna
A. V. Savin
Russian Federation
Savin, Alexander V. – D. Sc. (Eng), Associate Professor, Vice-Rector
Moscow
O. G. Krasnov
Russian Federation
Krasnov, Oleg G. – Ph.D. (Eng), Head of the Department of Track and Special Rolling Stock
Kolomna
References
1. Gromov, V. E., Ivanov, Yu. F., Morozov, K. V., Peregudov, O. A., Popova, N. A., Nikonenko, E. L. Mechanisms of rail hardening during long-term operation [Mekhanizmy uprocheniya relsov pri dlitelnoi ekspluatatsii]. Problemy chernoi metallurgii imaterialovedeniya, 2015,Iss. 4, pp. 98–104. [Electronic resource]: https://www.elibrary.ru/item.asp?id=25017048. Last accessed 12.01.2021.
2. Gromov, V. E., Ivanov, Yu. F., Morozov, K. V., Peregudov, O. A., Alsaraeva, K. V., Popova, N. A., Nikonenko, E. L. Changes in the structure and properties of the surface layers ofrail heads afterlong-term operation [Izmenenie struktury i svoistv poverkhnostnykh sloev golovki relsov posle dlitelnoi ekspluatatsii]. Fundamentalnie problemy sovremennogo materialovedeniya, 2015, Vol. 12, Iss. 2, pp. 203–208. [Electronic resource]: https://www.elibrary.ru/item.asp?id=23613452. Last accessed 12.01.2021.
3. Dobuzhskaya, A. B., Galitsyn, G. A., Syreishchikova, V. I. Study of the structure of rails with different resistance to formation of contact fatigue defects [Issledovanie struktury relsov s raznoi stoikostyu k obrazovaniyu kontaktno-ustalostnykh defektov]. In: Influence of the properties of a metal matrix on operational resistance of rails: Collection of scientific articles of JSC UIM, Yekaterinburg, 2006, pp. 64–81.
4. Markov, D. P. Contact fatigue of wheels and rails [Kontaktnaya ustalost koles i relsov]. Vestnik VNIIZhT, 2001, Iss. 6, pp. 8–14.
5. Akhmetzyanov, M. Kh. About the mechanism of development o f contact fatigue damage in rails [O mekhanizme razvitia kontaktno-ustalostnykh povrezhdenii v relsakh]. Vestnik VNIIZhT, 2003, Iss. 2, pp. 41–45.
6. Kossov, V. S., Krasnov, O. G., Akashev, M. G. Influence of crushing in the area of welded joints on the force effect of rolling stock on the track [Vliyanie smyatiya v zone svarnykh stykov na silovoe vozdeistvie podvizhnogo sostava na put’]. Vestnik VNIIZhT, 2020, Vol. 79, Iss. 1, pp. 35–43. [Electronic resource]: https://www.journalvniizht.ru/jour/article/download/382/293 . Last accessed 12.01.2021.
7. Kossov, V. S., Volokhov, G. M., Krasnov, O. G., Ovechnikov, M. N., Protopopov, A. L., Oguyenko, V. V. Influence of the value of axial loads on the contact fatigue strength of rails [Vliyanie velichiny osevykh nagruzok na kontaktno-ustalostnuyu prochnost’ relsov]. Vestnik VNIIZhT, 2018, Vol. 77, Iss. 3, pp. 149–156. [Electronic resource]: https://www.journal-vniizht.ru/jour/article/view/182. Last accessed 12.01.2021.
8. Meggiolaro, M. A., Pinho de Castro, J. T., Hao Wu. Invariant-based and Critical-plane Rainflow Approaches for Fatigue Life Prediction Under Multiaxial Variable Amplitude Loading. 3rd International Conference on Material and Component Performance under Variable Amplitude Loading (VAL 2015), Prague, March 23–26, 2015. Procedia Engineering, Vol. 101, pp. 69–76.
9. Sakalo, A. V. Mathematical modelling of contact stresses of fragments on an elastic foundation using finite element models. Ph.D. (Eng) thesis [Matematicheskoe modelirovanie kontaktnykh napryazhenii fragmentov na uprugom osnovanii s ispolzovaniem konechno-elementnykh modelei. Dis… na soisk. uch. step. kand. tekh. nauk]. Bryansk State Technical University, Bryansk, 2009, 143 p.
10. Manson, S. S. Fatigue: A complex subject – some simple approximation. Experimental Mechanics, 1965, Vol. 5, pp. 193–226.
11. Brown, M., Miller, K. J. Theory for fatigue under multiaxial stress-strain conditions. Proceedings of the Institution of Mechanical Engineers, 1973, Vol. 187, No. 65, pp. 745–756.
12. Shamsaei, N., Fatemi, A., Socie, D. F. Multiaxial fatigue evaluation using discriminating strain paths. International Journal of Fatigue, 2011, Vol. 33, No. 4, pp. 597–609. DOI: 10.1016/j.ijfatigue.2010.11.002.
13. Smith, R. N., Watson, P., Topper, T. H. A stressstrain parameter for the fatigue of metals. Journal of Materials Science, 1970, Vol. 5, No. 4, pp. 767–778.
14. Gorokhov, V. A. Numerical modelling of elastoplastic modeling ofstructures made ofstainlesssteels and graphites under quasi-static thermo-radiation loading. Ph.D. (Physics and Mathematics) thesis [Chislennoe modelirovanie uprugoplasticheskogo modelirovaniya konstruktsii iz nerzhaveyushchikh stalei i grafitov pri kvazistaticheskom termoradiatsionnom nagruzhenii. Dis… kand. fiz-mat nauk]. Nizhny Novgorod, 2007, 113 p. [Electronic resource]: http://www.unn.ru/pages/disser/209.pdf. Last accessed 12.01.2021.
15. Kossov, V. S., Krasnov, O. G., Oguenko, V. N. Improving reliability of rails during operation at low temperatures [Povyshenie nadezhnnosti relsov pri ekspluatatsii v usloviyakh nizkikh temperatur]. Proceedings of XVI International scientific and technical conference (readings in memory of prof. G. M. Shakhunyants) «Modern problems of design, construction and operation of a railway track». Section 2. Railway track for high speed traffic and high axle loads. Moscow, 2019, pp. 82–87.
16. Collins, J. Failure of materials in mechanical design: analysis, prediction, prevention [Russian title: Povrezhdenie materialov v konstruktsiyakh]. Transl. from English. Mir publ., 1984, 624 p.
17. Ramberg, W., Osgood, W. R. Description of Stress Strain Curves by Three Parameters. National Advisory Committee forAeronautics, Technical Note No. 902, 1943. [Electronic resource]: http://www.apesolutions.com/spd/public/NACA-TN902.pdf. Last accessed 12.01.2021.
18. Burago, N. G., Zhuravlev, A. B., Nikitin, I. S. Models of multiaxial fatigue fracture and assessment of durability of structural elements [Modeli mnogoosnogo ustalostnogo razrusheniya i otsenka dolgovechnosti elementov konstruktsii]. Izvestiya RAN. Rigid body mechanics, 2011, Iss. 6, pp. 22–33. [Electronic resource]: https://www.elibrary.ru/item.asp?id=17232791. Last accessed 12.01.2021.
19. Troschenko, V. T., Khamaza, L. A. Deformation curves of fatigue of steels and methods for determining their parameters [Deformatsionnie krivie ustalosti stalei i metody opredeleniya ikh parametrov]. Problemy prochnosti, 2010, Iss. 6, pp. 26–39.
Review
For citations:
Kossov V.S., Savin A.V., Krasnov O.G. On the Issue of Determining Relative Rail Rolling Contact Fatigue Damageability. World of Transport and Transportation. 2021;19(1):6-17. https://doi.org/10.30932/1992-3252-2021-19-1-06-17