Preview

World of Transport and Transportation

Advanced search

Physical Mechanisms of Ballast Granules Flying during Passage of High-Speed Trains

https://doi.org/10.30932/1992-3252-2020-18-54-71

Abstract

The article analyzes the mechanisms of crushed stone flying on high-speed railways. The objective of the work was to study and identify main mechanisms entailing flight of crushed stone from the ballast bed. It is substantiated that the main mechanism consists in squeezing of crushed stone particles from the upper layer of granules and their rise above the crushed stone bed following the action of longitudinal and transverse stresses in ballast, and that the most probable places of ejection of crushed stone particles is the border of contact between sleepers and the upper layer of the crushed stone bed.

The physics of this process is presented, which consists in lifting ballast by turbulent vortices, suspension of crushed stone particles over the bed under the influence of vibration, in collision of moving particles and the process of squeezing and ejection of ballast granules. The reasons for the occurrence of horizontal and lateral stresses in crushed stone ballast are shown.

About the Authors

V. M. Belkov
JSC VNIIZhT
Russian Federation

Belkov, Vladimir M. – D.Sc. (Physics and Mathematics), Scientific Consultant of the Scientific and Consulting Center for Ph.D. studies of JSC Rail Research Institute

Moscow



G. V. Gogrichiani
JSC VNIIZhT
Russian Federation

Gogrichiani, Georgy V. – D.Sc. (Eng), Head of the Scientific and Consulting Center for Ph.D. studies of JSC Rail Research Institute

Moscow



References

1. Belkov, V. M., Antipov, B. V. Physical and chemical foundations of track stability [Fiziko-khimicheskie osnovy ustoichivosti puti]. Put’ i putevoe khozyaistvo, 2013, Iss. 12, pp. 21–24.

2. Kolos, A. F., Tursunov, Kh. I., Nikolaytist, D. S. Investigation of strength properties of ballast material clogged with sand dunes [Issledovanie prochnostnykh svoistv ballastnogo material zasorennogo barkhatnymi peskami]. Electronic scientific journal «Engineering Bulletin of the Don», 2007–2012. [Electronic resource]: https://cyberleninka.ru/article/n/issledovanie-prochnostnyh-svoystv-ballastnogo-materiala-zasorennymi-barhannymi-peskami/pdf. Last accessed 14.05.2020.

3. Kamenskiy, V. B. Improvement of the track management system in modern conditions of railways operation [Sovershenstvovanie sistemy vedeniya putevogo khozyaistva v sovremennykh usloviyakh raboty zheleznykh dorog]. Abstract of Ph.D. (Eng) thesis. Moscow, 2011, 23 p.

4. Peich, Yu. L. Interaction of track elements in conditions of clogging and humidification [Vzaimodeistvie elementov puti v usloviyakh zasoreniya I uvlazhneniya]. Abstract of Ph.D. (Eng) thesis. Moscow, 2011, 23 p.

5. Ogibalov, P. M., Mirzadzhanzade, A. Kh. Nonstationary movements of viscoplastic media [Nestatsionarnie dvizheniya vyazkoplastichnykh sred]. Moscow, Publishing house of MSU, 1977, 372 p.

6. Derkowski, P., Clark, S., Sturt, R., Keylin, A., Baker, С., Vardy, A., Wilson, N. High-Speed Rail Aerodynamic Assessment and Mitigation Report. U.S. Department of Transportation. Federal Railroad Administration, Office of Research, Development, and Technology, Washington, DC20590. Report Number: DOT/FRA/ORD‑15/40. December 2015, 258 p. [Electronic resource]: https://railroads.dot.gov/elibrary/high-speed-rail-aerodynamic-assessment-and-mitigation-report. Last accessed 14.05.2020.

7. Saat, M. R., Bedini-Jacobini, F., Tutumluer, E., Barkan, C. P. L. Identification of High-Speed Rail Ballast Flight Risk Factors and Risk Mitigation Strategies, Final Report. Federal Railroad Administration, Washington, DC, Report Number: DOT/FRA/ORD‑15/03. 2015, 76 p. [Electronic resource]: https://railtec.illinois.edu/wp/wp-content/uploads/pdf-archive/TR_Identification-of-Ballast-Flight-Risk_final.pdf. Last accessed 14.05.2020.

8. Baker, C. J. A review of train aerodynamics. Part 1 – Fundamentals; Part 2 – Applications. The Aeronautical Journal, 2014, Vol. 118, No. 1201, 1202. [Electronic resource]: https://core.ac.uk/download/pdf/185479708.pdf; https://core.ac.uk/download/pdf/185479709.pdf. Last accessed 14.05.2020.

9. Jing, G., Liu, G. X., Lin, J., Martinez, J., Yin, C. T. Aerodynamic Characteristics of Individual Ballast Particle by Wind Tunnel Tests. Journal of Engineering Science and Technology Review, 2014, Vol. 7, Iss. 2, pp. 137–142. [Electronic resource]: http://www.jestr.org/downloads/Volume7Issue2/fulltext217214.pdf. Last accessed 14.05.2020. DOI: 10.25103/jestr.072.21.

10. Quinn, A., Hayward, M. Full-scale aerodynamic measurements underneath a high speed train. BBAA 6th International Colloquium on: Bluff Bodies Aerodynamics & Applications. Milano, Italy, July, 20–24, 2008. [Electronic resource]: https://www.researchgate.net/publication/237112260_full-scale_aerodynamic_measurements_underneath_a_high_speed_train/link/554898b80cf2b0cf7aced5ff/download. Last accessed 14.05.2020.

11. Lazaro, B. J., Gonzalez, E., Rodriguez, Manuel, Rodriguez, Miguel, Osma, S., Iglesias, J. Characterization and Modeling of Flying Ballast Phenomena in High-speed Train Lines. 9th World Congress Railway Research, May 22–24, 2011. [Electronic resource]: Challenge E: Bringing the territories closer together at higher speeds. http://www.railway-research.org/IMG/pdf/e4_lazaro_benigno.pdf. Last accessed 14.05.2020.

12. Belkov, V. M., Zhuravleva, M. A. Modelling of contamination of railway tracks and technical strip with dust particles [Modelirovanie zagryazneniya zheleznodorozhnogo polotna tekhnicheskoi polosy pylevatymi chastitsami]. Vestnik VNIIZhT, 2015, Iss. 2, pp. 9–14. [Electronic resource]: https://www.journal-vniizht.ru/jour/article/viewFile/22/23. Last accessed 14.05.2020.

13. Tursunov, Kh. I. Investigation on the oscillatory process in the ballast prism of a railway track, clogged with sand dunes [Issledovanie kolebatelnogo protsessa v ballastnoi prizme kheleznodorozhnogo puti, zasorennoi barkhatnymi peskami]. Engineering Bulletin of the Don, 2012, Iss. 3. [Electronic

14. resource]: https://cyberleninka.ru/article/n/issledovanie-kolebatelnogo-protsessa-vballastnoy-prizme-zheleznodorozhnogo-putizasorennoy-barhannymi-peskami/pdf. Last accessed 14.05.2020.

15. GOST R [State Standard] 55050-2012 Railway rolling stock. Norms of permissible impact on the railway track and test methods (with Amendment No. 1) [GOST R55050-2012 Zheleznodorozhniy podvizhnoi sostav. Normy dopustimogo vozdeistviya na zheleznodorozhniy puti’ i metody ispytanii (s Izmeneniem No.1)]. [Electronic resource]: http://docs.cntd.ru/document/1200096113. Last accessed 14.05.2020.

16. Effective underrail and rail pads made of SYLOMER and SYLODYN materials [Effektivnie podrelsovie i nashpalnie prokladki iz materialov SYLOMER i SYLODYN]. LLC Acoustic Materials and Technologies, Kiev [Electronic resource]: http://www.acoustic.ua/articles/113. Last accessed 14.05.2020.

17. Experimental assessment of interaction of the vehicle and track at speed and high-speed traffic: Monograph [Eksperimentalnaya otsenka vzaimodeistviya ekipazha i puti pri skorostnom i vysokoskorostnom dvizhenii: Monografiya]. Ed. by A. M. Brzhezovsky. Moscow, RAS, 2019, 152 p.

18. Popov, V. L. Mechanics of contact interaction and physics of friction [Mekhanika kontaktnogo vzaimodeistviya i fizika treniya]. Moscow, Fizmatlit, 2012, 348 p.


Review

For citations:


Belkov V.M., Gogrichiani G.V. Physical Mechanisms of Ballast Granules Flying during Passage of High-Speed Trains. World of Transport and Transportation. 2020;18(3):54-71. https://doi.org/10.30932/1992-3252-2020-18-54-71

Views: 254


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1992-3252 (Print)