Preview

World of Transport and Transportation

Advanced search

THE ABSOLUTE FIRST CENTRAL MOMENT OF RANDOM VARIABLES

https://doi.org/10.30932/1992-3252-2017-15-3-2

Abstract

[For the English abstract and full text of the article please see the attached PDF-File (English version follows Russian version)].ABSTRACT The geometric, Poisson, and binomial distribution laws are considered in the article. For each of them an analytic formula of the absolute first central moments is derived, which allows us to find the average distribution zone. The work is of a fundamental nature and can be used in studies on probability theory, in applied problems where these distribution laws are present. Keywords: random variable, distribution laws, mathematical expectation, dispersion, root-mean-square deviation, moments of random variables.

About the Author

A. I. Gusev
Московский государственный университет путей сообщения (МИИТ)
Russian Federation


References

1. Гнеденко Б. В. Курс теории вероятностей. - Изд. 6-е, перераб.и доп. - М.: Наука, 1988.[Электронный ресурс]: http://www.booksshare.net/books/physics/ gnedenko-bv/1988/files/kursteoriiveroyatnostey1988.pdf.Доступ 15.11.2016.

2. Гмурман В. Е. Теория вероятностей и математическая статистика. - М.: Высшая школа, 2003. - 479 с.

3. Кремер Н. Ш. Теория вероятностей и математическая статистика: Учебник. - 3-е изд., перераб.и доп. - М.: Юнити, 2012. - 552 с.


Review

For citations:


Gusev A.I. THE ABSOLUTE FIRST CENTRAL MOMENT OF RANDOM VARIABLES. World of Transport and Transportation. 2017;15(3):16-29. https://doi.org/10.30932/1992-3252-2017-15-3-2

Views: 433


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1992-3252 (Print)