INTERACTION BETWEEN FLEXIBLE WHEEL-SET AND CORRUGATED RAILS
Abstract
Railway track represents a periodic structure. In the presence of short-pitch rail corrugation, a wheel moving at high speed induces the vibrations whose frequency is greater than the frequency of the second symmetric flexural mode of a wheel-set. Therefore, the wheel-set cannot be regarded as a rigid body. In this study, the wheel-set is modeled by means of five lumped masses connected to a weightless flexible axle. These masses correspond to the boxes, to the wheels and to the wheel-set axle. Contact deformation due to a periodic contact force between the wheel and the rail causes an approach of the wheel centre to the rail centre-line. This approach is calculated by means of non-linear contact mechanics. The periodically varying curvature of the rail vertical profile causes periodic variation in the wheel-rail contact stiffness whose period equals the corrugation length. The above force is determined by means of Fourier series.
About the Author
P. M. BelotserkovskiyRussian Federation
D.Sc. (Tech), professor of the department of higher mathematics
References
1. Belotserkovskiy P. M. Nonlinear interaction between flexible wheel-sets via corrugated rails, M. J. Brennan ed. 10th International Conference RASD 2010, Southampton, England, 2010. CD.
2. Belotserkovskiy P. M., Pugina L. V. Roll of a flexible wheelset over corrugated rails: influence of the wheel radius, I. Zobory ed. Proceedings of the 10th Mini Conference on Vehicle System Dynamics, Identification and Anomalies VSDIA 2006. Budapest, Hungary, 2006, pp. 123–130.
3. Белоцерковский П. М., Пугина Л. В. Качение колеса по рельсу с волнообразным износом// Прикладная математика и механик. –2008, – Том 72, Вып. 3. – С. 421–430. Belotserkovskiy P. M., Pugina L. V. Wheel rolling over the wavy worn rail [Kachenie kolesa po relsu s volnoobraznym iznosom]. Prikladnaya matematika [Applied Mathematics], 2008, vol.72, Iss. 3, pp.421–430.
4. Belotserkovskiy P. M. Nonlinear interaction between a flexible wheel-set and severely corrugated rails, M. J. Brennan ed. 7th European Conference on Structural Dynamics, Southampton, England, 2008. CD.
5. Белоцерковский П. М. Взаимодействие бесконечного ряда колес с постоянным шагом, равно- мерно движущихся по рельсовому пути// Прикладная математика и механика. – 2004. – Том 68, Вып. 6. – С. 1025–1034. Belotserkovskiy P. M. Interaction of infinite series of the wheels with fixed lead moving uniformly by rail track [Vzaimodeistvie beskonechnogo riada kolios s postoyannym shagom, ravnomerno dvizhuschihsia po relsovomu puti]. Prikladnaya matematika i mehanika [Applied Mathematics and Mechanics], 2004, vol.68, Iss. 6, pp.1025–1034.
6. Belotserkovskiy P. M. Interaction between a railway track and uniformly moving tandem wheels. Journal of Sound and Vibration, 298, 855–876, 2006.
7. Igeland А., Ilias Н. Rail head corrugation growth prediction based on non-linear high frequency vehicle/ track interaction. Wear, 213, 90–97, 1997.
8. Abramowitz М., Stegun I. Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables. Bureau of Standards, Washington, 1964 (Абрамовиц М., Стиган И. Справочник по специальным функциям с формулами, графиками и математическими таблицами. – М.: Наука, ред., 1979).
9. Fluegge W. ed. Handbook of Engineering Mechanics. McGraw-Hill. N.Y., 1962.
10. Grassie S. L., Gregory R. W., Harrison D., Johnson K. L. The dynamic response of railway track to high frequency vertical excitation. Journal of Mechanical Engineering Science, 24, 77–90, 1982.
11. Ripke B. Hochfrequnte Gleismodellierung und Simulation der Fahrzeug-Gleis-Dynamik unter Verwendung einer nichtlinearen Kontaktdynamik, VDI Fortschritt-Berichte, Reihe 12, No. 249, VDI–Verlag, Duesseldorf, 1995.
12. Kremer M. Comparison of dynamical simulation methods by using rail-bus models of different degree-of-freedom, I. Zobory ed. Proceedings of the 11th Mini Conference on Vehicle System Dynamics, Identification and Anomalies VSDIA 2008. Budapest, Hungary, 2008, pp. С. 259–268.
13. Весницкий А. И., Метрикин А. В. Параметрическая неустойчивость колебаний тела, равно- мерно движущегося по периодически неоднородной упругой системе// Прикладная механика и техническая физика. –1993. – № 2. – С. 127–133. Vesnitsky A. I., Metrikin A. V. Parametric instability of oscillations of a solid moving uniformly over periodically not uniform elastic system [Parametricheskaya neustoichivost kolebaniy tela, ravnomerno dvizhuschegosia po periodicheski neodnorodnoy uprugoy systeme]. Prikladnaya mehanika i tehnicheskaya fizika [Applied Mechanics and Technical Physics], 1993, Iss.2, pp.127– 133.
14. Белоцерковский П. М. Исследование вертикальных параметрических колебаний и устойчивости движения нагруженного колеса по рельсу// Транспорт: наука, техника, управление. – 2000. – № 2. – С. 39–44. Belotserkovskiy P. M. A study on vertical parametric oscillations and stability of a loaded wheel moving along the rail [Issledovanie vertikalnyh parametricheskih kolebaniy i ustoichivosti dvizheniya nagruzhennogo kolesa po relsu]. Transport: nauka, tehnikam, upravlenie [Transport: science, technics, managment], 2000, Iss.2, pp.39–44.
15. Белоцерковский П. М. Нелинейная контактная механика на рельсах с короткими волнами// Мир транспорта. – 2011. – № 3. – С. 4–13. Verichev S. N., Metrikine A. V. Instability of vibrations of a mass that moves uniformly along a beam on a periodically inhomogeneous foundation. Journal of Sound and Vibration, 260, 901–925, 2003. 16. Belotserkovskiy P. M. Nonlinear Contact Mechanics on the Rails with Short Waves. Mir Transporta [World of Transport and Transportation Journal], 2011, Vol.36, Iss.3, рp.4–13.
Review
For citations:
Belotserkovskiy P.M. INTERACTION BETWEEN FLEXIBLE WHEEL-SET AND CORRUGATED RAILS. World of Transport and Transportation. 2013;(2):6-17. (In Russ.)