FUZZY PRODUCTION MODEL FOR INITIAL EVALUATING OF THE RISK OF COLLISIONS
Abstract
Modern assessment of collision risk has a distinct value for safe shipping. Upon detection of a target vessel, that is, a vessel with which it is necessary to avoid collision, a ship driver shall promptly determine whether a situation of close approach to them is developing [1], and if it is so to decide on the best maneuver to prevent a possible threat.
This paper proposes a fuzzy production model of the initial assessment of collision risk on computed distance and time of approach, in which a mentioned disadvantage is eliminated.
Based on the theory of fuzzy sets an assessment model of collision risk is developed. Linguistic variables, used in it, are presented and universal sets for each of them are defined. Implementation of the model was carried out in a software environment FuzzyTECH, performance of the system on several test examples is demonstrated.
About the Author
N. A. SedovaRussian Federation
Ph.D. (Eng.), associate professor at the department of automatic and information systems
References
1. Письменный М. Н. Краткий курс лекций по изучению международных правил предупреждения столкновений судов в море [Электронный ресурс]. http://pilotservice.narod.ru/masters/ColRegLec/ColRegLec.htm. Доступ 10.12.2014. Pismenniy, M. N. Short course of lectures of International Regulations for Preventing Collisions at Sea [Kratkij kurs lekcij po izucheniju mezhdunarodnyh pravil preduprezhdenija stolknovenij sudov v more] [electronic resource]. Access mode: http://pilotservice.narod.ru/masters/ColRegLec/ColRegLec.htm. Last accessed 10.12.2014.
2. Мальцев А. С. Маневрирование судов при расхождении. – Одесса: ЦПАП, 2005. – 208 с. Maltsev, A. S. Maneuvering of vessels in case of misconvergence [Manevrirovanie sudov pri rashozhdenii]. Odessa, TSPAP publ., 2005, 208 p.
3. Seong-Gon Kim, Yong-Gi Kim (2009). An Autonomous Navigation System for Unmanned Under water Vehicle, Under water Vehicles, Alexander V. Inzartsev (Ed.), ISBN: 978–953–7619–49–7, InTech, Austria, 582 p. – pp. 279–294.
4. Hasegawa K., Fukuto J., Miyake R., Yamazaki M. An Intelligent Ship Handling Simulator with Automatic Collision Avoidance Function of Target Ships // Proc. International Navigation Simulator Lecturers Conference, (INSL17), Rostock, Germany, Sep. 3–7, 2012. – pp.F23–1–10.
5. Hasegawa K., Yamazaki M. Qualitative and Quantitative Analysis of Congested Marine Traffic Environment – An Application Using Marine Traffic Simulation System, Proc. of 10th International Conferenceon Marine Navigation and Safety of Sea Transportation (TransNav 2013), Vol.7, No.2, Gdyia, Poland June 19–21, 2013. – pp.179–184.
6. Леоненков А. В. Нечёткое моделирование в среде MATLAB и FuzzyTech. – СПб.: БХВ-Петербург, 2005. – 736 с. Leonenkov, A. V. Fuzzy modeling in MATLAB and FuzzyTech [Nechjotkoe modelirovanie v srede MATLAB i FuzzyTech]. St. Petersburg, BHV-Petersburg, 2005, 736 p.
7. Седова Н. А. Разработка интеллектуальных систем на базе нечеткой логики в FuzzyTech (методические указания к лабораторной работе). – Владивосток: МГУ им. адм. Г. И. Невельского, 2012. – 56 с. Sedova, N. A. Development of intelligent systems based on fuzzy logic in FuzzyTech (guidelines for laboratory works) [Razrabotka intellektual’nyh sistem na baze nechetkoj logiki v FuzzyTech (metodicheskie ukazanija k laboratornoj rabote)]. Vladivostok, Admiral Nevelsky Maritime State University, 2012, 56 p.
8. Седова Н. А. Расхождение судов в зоне чрезмерного сближения // Мир транспорта. – 2014. – № 6. – С. 124–132. Sedova, N. A. Collision avoidance actions in the area of excessive approach. World of Transport and Transportation, 2014, Vol.12, Iss. 6, pp. 124–132.
Review
For citations:
Sedova N.A. FUZZY PRODUCTION MODEL FOR INITIAL EVALUATING OF THE RISK OF COLLISIONS. World of Transport and Transportation. 2015;13(2 (57)):200-206.