Method for Determining Durability of a Bridge Superstructure
https://doi.org/10.30932/1992-3252-2024-22-4-5
Abstract
The objective of the study is to develop a method for determining the durability of a reinforced concrete girder of a superstructure when exposed to aggressive environments.
The scientific substantiation of the method is based on the laws of establishing a uniform distribution of atmospheric gas concentrations among homogeneous parts of reinforced concrete and determining the depth of their diffusion. To describe the penetration rate, analytical equations are applied to determine the depth of diffusion of atmospheric gases into concrete. When the diffusion products reach the main reinforcement, corrosion processes start, which cause a decrease in the effective area, and, therefore, a loss of the bearing capacity of the girder of the superstructure during operation of the bridgework.
The proposed calculation method has allowed to build a regression model for assessing durability of reinforced concrete structures depending on the diffusion of aggressive environments and on a variable number of days per year with precipitation. Analysis of the obtained results has shown that when the diffusion products of atmospheric gases reach the main reinforcement, processes of irreversible changes (irreversible decrease) in the bearing capacity of the superstructure begin. It has been established that the service life before failure when exposed to halogens and hydrohalic acids may not exceed 30 years. The application of the method makes it possible to determine the residual service life of the superstructure based on assessment of the bearing capacity resource and to develop regulatory documents on timing of repair work.
About the Authors
G. I. OgurtsovRussian Federation
Gleb L. Ogurtsov - Assistant Lecturer at the Higher School of Industrial, Civil and Road Construction, Peter the Great St. Petersburg Polytechnic University.
St. Petersburg
Researcher ID AFI-6310–2022; Scopus Author ID 57939891300; Russian Science Citation Index Author ID 957338
N. A. Ermoshin
Russian Federation
Nikolay A. Ermoshin - D.Sc. (Mil. Sc.), Professor at the Higher School of Industrial, Civil and Road Construction, Peter the Great St. Petersburg Polytechnic University.
St. Petersburg
Web of Science Researcher ID ABA-1133–2020; Scopus Author ID 57215847497; Russian Science Citation Index Author ID 735873
References
1. Gulitskaya, L. V., Shimanskaya, O. S.An analysis of the technical and operational condition of plate concrete superstructures of highway bridges [Analiz tekhniko-ekspluatatsionnogo sostoyaniya zhelezobetonnykh proletnykh stroenii avtodorozhnykh mostovykh sooruzhenii]. Transport. Transport facilities. Ecology, 2017, Iss. 1, pp. 35–45. DOI: 10.15593/24111678/2017.01.03.
2. Karapetov, E. S., Beliy, A. A. Methods for assessing technical and operational performance of reinforced concrete bridge structures in St. Petersburg [Metody otsenki tekhniko-ekspluatatsionnykh pokazatelei zhelezobetonnykh mostovykh sooruzhenii Sankt-Peterburga]. Izvestiya Peterburgskogo universiteta putei soobshcheniya, 2009, Iss. 2 (19), pp. 177–187. EDN: KVKFKX.
3. Boroday, D. I. Forecast of durability of typical reinforced concrete slab span structures of road bridges [Prognoz dolgovechnosti tipovykh zhelezobetonnykh plitnykh proletnykh storenii avtodorozhnykh mostov]. Bulletin of Donbass National Academy of Civil Engineering and Architecture, 2011, Iss.1 (87), pp. 169–176. EDN: FCCMZB.
4. Talipova, L. V., Shonina, E. V. Determination of carbon footprint in construction [Opredelenie uglerodnogo sleda v stroitelstve]. In: Engineering tasks: problems and solutions [Inzhenernye zadachi: problem i puti resheniya]: Proceedings of II All-Russian (national) scientific and practical conference. Arkhangelsk: Northern (Arctic) Federal University named after M. V. Lomonosov, 2021, pp. 99–102. EDN: BSQSGN.
5. Ovchinnikova, T. S., Marinin, A. N., Ovchinnikov, I. G. Corrosion and anti-corrosion protection of reinforced concrete bridge structures [Korroziya i antikorrozionnaya zashchita zhelezobetonnykh mostovykh konstruktsii]. Internet journal «Naukovedenie», 2014, Iss. 5 (24), p. 11. EDN: TKELFZ.
6. Nikonorov, A. N., Zaitsev, A. A. Protection of bridge structures from atmospheric corrosion [Zaschita mostovykh konstruktsii ot atmosfernoi korrozii]. Problemy nauki, 2020, Iss. 1 (49), pp. 12–15. EDN: XKAREB.
7. Kozlova, V. K., Kalko, I. K., Zavadskaya, L.V., Manokha, A. M., Wolf, A. V., Khomutov, E. S. Determination of the degree of corrosion destruction of reinforced concrete bridge structures [Opredelenie stepeni korrozionnogo razrusheniya mostovykh zhelezobetonnykh konstruktsii]. Polzunovsky almanac, 2023, Iss. 1, pp. 63–66. EDN: MUGTWX.
8. Molodin, V. V., Anufrieva, A. E., Leonovich, S. N. Influence of Carbonization of Concrete Surfaces on their Adhesion with Freshly-Laid Concrete. Science and Technique, 2021, Vol. 20, Iss. 4, pp. 320–328. DOI: 10.21122/2227-1031-2021-20-4-320-328.
9. Moraru, C., Apostu, A., Georgescu, D. Carbonation Resistance Classes of Concretes. Romanian journal of transport infrastructure, 2021, Vol. 10, Iss. 1, pp. 50–65. DOI: https://doi.org/10.2478/rjti-2021-0004.
10. Al Fuhaid, A. Effects of fine Aggregates, Cicopowder-WP, and Styrene-Butadiene rubber on carbonation resistance in concrete. Materials Today: Proceedings, 2023. DOI: https://doi.org/10.1016/j.matpr.2023.03.781. [Article in press].
11. Chen Ying, Liu Peng, Yu Zhiwu, Li Siyang, Hu Cheng, Lu Dapeng. Research on the performance evolution of concrete under the coupling effects of sulfate attack and carbonation. Journal of materials research and technology, 2023, Vol. 26, pp. 4670–4695. DOI: https://doi.org/10.1016/j.jmrt.2023.08.206.
12. Troyan, V. V. Modelling the durability of reinforced concrete structures [Modelirovanie dolgovechnosti zhelezobetonnykh konstruktsii]. Tekhnologii betonov, 2011, Iss. 5–6 (58–59), pp. 39–41. EDN: TKANWZ.
13. Yin Shen, Yi Wang, Xiaoqing Xu, Feipeng Ruan. Study on carbonation of construction joints through field tests on a 30-year-old bridge and accelerated carbonation tests. Case Studies in Construction Materials, 2023, Vol. 19, e02231. DOI: https://doi.org/10.1016/j.cscm.2023.e02231.
14. Maohua Zhang, Lin Du, Zhiyi Li, Ronghua Xu. Durability of Marine Concrete Doped with Nanoparticles under Joint Action of Cl-Erosion and Carbonation. Case Studies in Construction Materials, 2023, Vol. 18, e01982. DOI: https://doi.org/10.1016/j.cscm.2023.e01982.
15. Xupeng Ta, Zhijun Wan, Yuan Zhang, Shubing Qin, Jiale Zhou. Effect of carbonation and foam content on CO2 foamed concrete behavior. Journal of materials research and technology, 2023, Vol. 23, pp. 6014–6022. DOI: https://doi.org/10.1016/j.jmrt.2023.02.178.
16. Bastidas-Arteaga, E., Rianna, G., Gervasio, H., Nogal M. Multi-region lifetime assessment of reinforced concrete structures subjected to carbonation and climate change. Structures, 2022, Vol. 45, pp. 886–899. DOI: https://doi.org/10.1016/j.istruc.2022.09.061
17. Konečný, P., Lehner, P. Durability assessment of concrete bridge deck considering waterproof membrane and epoxy-coated reinforcement. Perspectives in Science, 2016, Vol. 7, pp. 222–227. DOI: https://doi.org/10.1016/j.pisc.2015.11.036
18. Song Gao, Jia Guo, Yaoyao Gong, Shunli Ban, Ang Liu. Study on the penetration and diffusion of chloride ions in interface transition zone of recycled concrete prepared by modified recycled coarse aggregates. Case Studies in Construction Materials, 2022, Vol. 16, e01034. DOI: https://doi.org/10.1016/j.cscm.2022.e01034 [full text of the issue].
19. Krivtsova, O. N., Andreyashchenko, V. A., Panin, E. A., Frants, Yu. Yu. Corrosion of reinforcing steel in the post-rolling period: causes and methods of its protection [Korroziya armaturnogo prokata v postprokatniy period: prichiny i sposoby ego zashchity]. Trudy universiteta, 2018, Iss. 3 (72), pp. 93–96. EDN: YLXYQX.
20. Kazakov, V. A., Popov, V. A., Kosach, A. F. Atmospheric corrosion of reinforcement in reinforced concrete structures [Atmosfernaya korroziya armatury v zhelezobetonnykh konstruktsiyakh]. In: Architecture, construction, transport: materials of the International scientific and practical conference (to the 85th anniversary of the Federal State Budgetary Educational Institution of Higher Professional Education «SibADI»), Omsk, 02–03 December 2015. Omsk, SibADI, 2015, pp. 275–280. EDN: VMRSQZ.
Review
For citations:
Ogurtsov G.I., Ermoshin N.A. Method for Determining Durability of a Bridge Superstructure. World of Transport and Transportation. 2024;22(4):33-42. https://doi.org/10.30932/1992-3252-2024-22-4-5
JATS XML






















