Determining Mechanical Strength of Composite Traverse for 6-10 kV Overhead Power Line with Finite Element Method
https://doi.org/10.30932/1992-3252-2024-22-1-2
Abstract
Overhead power lines with a voltage of 6–10 kV, intended for power supply of signalling, centralised traffic control and signalling block systems and of electrical equipment along the railways use as supporting structures metallic traverses with porcelain or glass insulators. According to available data, defects caused by mechanical stresses account for more than half of the total number of disruptions in the normal operation of overhead power lines. It is worth highlighting defects that are the most frequent: chip of the insulator, bend of the pin, fracture of the pin, destruction of the insulator, separation of the insulator from the pin, distortion of the traverse, destruction of the traverse, bending of the traverse, decay or corrosion of the traverse.
To increase the reliability of overhead power lines and reduce these damages, it is proposed to manufacture traverses from polymer composite electrical insulating material. Such traverses do not have insulators and are used as an electromechanical structure with the required mechanical and electrical strength.
The objective of this work is to assess the mechanical strength of traverses made of polymer composite electrical insulating materials. To solve the set tasks, the work considers a three-dimensional model of the traverse. Its mechanical strength is determined using applied software implementing the finite element method (FEM). Loads in horizontal and vertical planes are applied to the cross-arm, the most stress-strained state of the traverse’s arms and the pin bracket is determined.
In addition, the article compares the calculation results using the analytical method performed in the previous work with FEM calculation, verifies the assumed physical and geometric parameters, material properties and assumptions in calculations.
About the Authors
Yu. A. KochunovRussian Federation
Yury A. Kochunov - Ph.D. (Eng), Design Engineer of LLC «NPP Elektromash».
Yekaterinburg
Russian Science Citation Index Author ID: 890174
D. V. Egorov
Russian Federation
Dmitry V. Egorov - Ph.D. student at Ural State University of Railway Transport.
Yekaterinburg
Russian Science Citation Index Author ID: 931760
References
1. Kochunov, Yu. A. Development and research of a polymer bracket for overhead power lines in networks of non-traction railway 6–10 kV consumers. Ph.D. (Eng) thesis [Razrabotka i issledovaniya polimernogo kronshteina vozdushnoi linii elektroperedachi v setyakh netyagovykh zheleznodorozhnykh potrebitelei 6–10 kV. Diss. …kand. tekh. nauk]. Yekaterinburg, USURT publ., 2017, 235 p.
2. Lukyanov, A. M., Chepelev, Yu. G., Bardin, A. N. Development of Polymer Consoles. World of Transport and Transportation, 2016, Vol. 14, Iss. 3 (64), pp. 60–71. EDN: XXJQHV.
3. Popov, S. N., Fedorov, Yu. Yu., Vasiliev, S. V. Composite crossarms for high-voltage power line poles [Sostavnie kompozitnie traversy dlya opor vysokovoltnykh linii elektroperedachi]. Energobezopasnost i energosberezhenie, 2016, Iss. 3, pp. 9–11. EDN: WBGJAL. DOI: 10.18635/2071-2219-2016-3-9-11.
4. Fedotov, A. A., Kolesnikov, S. A., Khoroshevsky, R. A. Wooden brackets will be replaced by polymer ones [Derevyannie kronshteiny zamenyat polimernymi]. Lokomotiv, 2013, Iss. 3 (675), p. 43.
5. Fedorov, Yu. Yu., Popov, S. N., Unzhakov, A. S. Fiberglass mobile poles for power lines with voltage up to 10 kV [Stekloplastikovie mobilnie opory dlya linii elektroperedachi s napryazheniem do 10 kV]. Energobezopasnost i energosberezhenie, 2023, Iss. 2, pp. 5–10. EDN: WUZARS.
6. Vasiliev, S. V., Fedorov, Yu. Yu. Development of a composite traverse for the anchored end pole of a 6–10 KV power line [Razrabotka kompozitnoi traversy ankernoi kontsevoi opory linii elektroperedachi 6–10 kV]. Eurasian Scientific Association, 2019, Iss. 5–2 (51), pp. 108–110. EDN: WNNXVK.
7. Fedorov, Yu. Yu., Babenko, F. I. The influence of low temperatures on behaviour of pre-deformed fiberglass [Vliyanie nizkikh temperature na povedenie predvaritelno deformirovannogo stekloplastika]. Plastic masses, 2018, Iss. 1–2, pp. 9–11. EDN: YQUDNT.
8. Kochunov, Yu. A., Kolmakov, D. A., Egorov, D. V. Analytical determination of the mechanical strength of a composite traverse for 6–10 kV overhead power lines [Analiticheskoe opredelenie mekhanicheskoi prochnosti kompozitnoi traversy dlya VL 6–10 kV]. Science and education in transport, 2022, Iss. 2, pp. 29–34. EDN: XKWEEF.
9. Lukyanov, A. M. Development of polymer insulating structures that ensure increased industrial safety of catenary networks. D.Sc. (Eng) thesis [Razrabotka polimernykh izoliruyushchikh konstruktsii, obespechivayushchikh povyshenie promyshlennoi bezopasnosti kontaktnykh elektricheskikh setei. Diss..dokt.tekh.nauk]. Moscow, MGUPS publ., 1998, 225 p.
10. Rutsky, V. M. Improvement of methods for design and operation of insulation of external electrical installations of railway power supply systems. D.Sc. (Eng) thesis [Sovershenstvovanie metodov proektirovaniya i ekspluatatsii izolyatsii naruzhnykh elektroustanovok sistem elektrosnabzheniya zheleznykh dorog. Diss. … dok. tekh. nauk]. Yekaterinburg, USURT publ., 2004, 373 p.
11. Lizin, V. T., Pyatkin, V. A. Design of thin-walled structures [Proektirovanie tonkostennykh konstruktsii]. Moscow, Mashinostroenie publ., 1976, 408 p.
12. Turbin, N. V., Trifonov, R. D., Kovtunov, S. S. Simulation of collapse of a composite material using computational micromechanics methods [Modelirovanie smyatiya kompozitsionnogo materiala metodami vychislitelnoi mikromekhaniki]. II International Conference «Composite Materials and Structures». November 16, 2021. Moscow. Abstract. Moscow, Pero publ., 2021, pp. 88–89. EDN: FJNDYO.
13. Pelevin, A. G., Shadrin, V. V. Features of using the viscoelastic material model in the ANSYS software package. Bulletin of Perm University. Mathematics. Mechanics. Computer Science, 2021, Iss. 3 (54), pp. 52–57. DOI: https://doi.org/10.17072/1993-0550-2021-3-52-57.
14. Krylov, K. A., Murzakhanov, G. Kh., Shchugorev, V. N. Experimental study of destruction of composites under dynamic loading [Eksperimentalnoe issledovanie razrusheniya kompozitov pri dinamicheskom nagruzhenii]. [Electronic resource]. Science and education: scientific publication of Bauman MSTU, 2007, Iss. 10, p. 1. EDN: IBZWYT.
15. Kablov, E. N. Composites: today and tomorrow [Kompozity: segodnya i zavtra]. Metally Evrazii, 2015, Iss. 1, pp. 36–39. EDN: UBDOPV.
Review
For citations:
Kochunov Yu.A., Egorov D.V. Determining Mechanical Strength of Composite Traverse for 6-10 kV Overhead Power Line with Finite Element Method. World of Transport and Transportation. 2024;22(1):17-23. https://doi.org/10.30932/1992-3252-2024-22-1-2