Диагностика судовых двигателей на основе вейвлет-нейронной сети и сканирования изображений с помощью программируемой логической логической схемы
https://doi.org/10.30932/1992-3252-2023-21-6-13
Аннотация
Статья посвящена системе диагностики судовых двигателей на основе вейвлет-нейронной сети и сканирования изображений с помощью программируемой логической схемы. Рассматривается метод анализа мультифрактальных вейвлет-моделей.
Для целей неразрушающего контроля, который позволяет точно диагностировать неисправности и принимать эффективные меры по предиктивному обслуживанию, что в свою очередь дает возможность эффективно повысить безопасность и надежность оборудования, снизить затраты на обслуживание, значительный потенциал имеет сочетание вейвлет-нейронных сетей с программируемой на базе ПЛИС (программируемая логическая интегральная схема) платформой обработки изображений в реальном времени.
В статье предложен усовершенствованный подход к диагностике судовых двигателей, который основан на вейвлет-нейронной сети и сканировании изображений с помощью программируемой логической схемы. Вейвлет-пакетное разложение представляет собой метод локального анализа времени и частоты. Он постепенно уточняет сигнал в нескольких масштабах посредством операций масштабирования и перевода, также он может автоматически адаптироваться к требованиям частотно-временного анализа сигнала, чтобы сосредоточиться на его любых деталях. Его преимуществом является хорошая диагностическая точность для информации с различными уровнями шума, а также высокая надежность, поскольку используются данные изображения от нескольких сигналов двигателя.
Ключевые слова
Об авторах
А. И. ЕпихинРоссия
Епихин Алексей Иванович – кандидат технических наук, доцент, начальник кафедры эксплуатации судовых механических установок
Web of Science Researcher ID: X‑2415-2018; Scopus ID: 57321825100; РИНЦ Author ID: 830732.
Новороссийск
С. И. Кондратьев
Россия
Кондратьев Сергей Иванович – доктор технических наук, профессор, ректор
Web of Science Researcher ID: AAL‑1619-2021; Scopus ID: 57321941300; РИНЦ Author ID: 751295.
Новороссийск
Е. В. Хекерт
Россия
Хекерт Евгений Владимирович – доктор технических наук, профессор, проректор
Web of Science Researcher ID: AAL‑1290-2021, Scopus ID: 57320865700; РИНЦ Author ID: 765031.
Новороссийск
Список литературы
1. Tianlong Lu, Zhen Lu, Yuchuan Gao, Lei Shi, Huaiyin Wang, Tianyou Wang. Investigation on suitable swirl ratio and spray angle of a large-bore marine diesel engine using genetic algorithm. Fuel, 2023, Vol. 345, 128187. DOI: 10.1016/j.fuel.2023.128187.
2. Епихин, А. И. Подход нечеткой кластеризации в распределенных информационных системах судовых двигателей. Морские интеллектуальные технологии. – 2023. – № 2–1 (60). – С. 75–79. DOI: 10.37220/MIT.2023.60.2.008.
3. Marko, K. A., Bryant, B., Soderborg, N. Neural network application to comprehensive engine diagnostics. In: IEEE International Conference on Systems, Man and Cybernetics, Chicago, IL, 1992, pp. 1016–1022.
4. Глушков С. П., Жидких В. О. Выбор вейвлетобразующей функции для анализа динамических характеристик сигнала двигателя внутреннего сгорания // Вестник Сибирского государственного университета путей сообщения. – 2017. – № 1 (40). – С. 51–56. [Электронный ресурс]: http://www.stu.ru/particular/get_teamwox_file.php?id=28121&ext=.pdf [полный текст номера]. Доступ 20.11.2023.
5. Shatnawi, Y., Al-Khassaweneh, M. Fault Diagnosis in Internal Combustion Engines Using Extension Neural Network. IEEE Transactions on Industrial Electronics, 2014, Vol. 61, Iss. 3, pp. 1434–1443. DOI: 10.1109/TIE.2013.2261033 [ограниченный доступ].
6. Ravikumar, K. N., Madhusudana, C. K., Kumar, H., Gangadharan, K. V. Classification of gear faults in internal combustion (IC) engine gearbox using discrete wavelet transform features and K star algorithm. Engineering Science and Technology, 2022, Vol. 30, 101048. DOI: https://doi.org/10.1016/j.jestch.2021.08.005.
7. Ghaedi, A., Pour, E. S., Hosseinzadeh, F. Application of the discrete wavelet transform and probabilistic neural networks in IC engine fault diagnostics. Indian Journal of Fundamental and Applied Life Sciences, 2015, Vol. 5 (S1), pp. 1587–1592. [Электронный ресурс]: www.cibtech.org/sp.ed/jls/2015/01/jls.htm (online). Доступ 27.11.2023.
8. Czech, P., Wojnar, G., Burdzik, R., Konieczny, L., Warczek, J. Application of the discrete wavelet transform and probabilistic neural networks in IC engine fault diagnostics. Journal of Vibroengineering, 2014, Vol. 16, Iss. 4, 1268, pp. 1619–1639. [Электронный ресурс]: https://www.extrica.com/article/15251. Доступ 27.11.2023.
9. Кириллов А. В., Деста А. Б., Дубесса М. Х., Акалу Й. А. Применение нейронных сетей для диагностики и предупреждения отказов датчиков турбореактивного двухконтурного двигателя. Перспективы науки. – 2021. – № 11 (146). – С. 35–37. EDN: ZBQMDY
10. Енчев С. В., Товкач С. С. Вейвлет-анализ параметров систем автоматического управления авиационных двигателей. Научный вестник МГТУ ГА. – 2014. – № 204. – С. 90–96. [Электронный ресурс]: https://avia.mstuca.ru/jour/article/view/593. Доступ 27.11.2023.
11. Monday, H. N., Li, J., Nneji, G. U. [et al]. A wavelet convolutional capsule network with modified super resolution generative adversarial network for fault diagnosis and classification. Complex and Intelligent Systems, 2022, pp. 4831–4847. DOI: https://doi.org/10.1007/s40747-022-00733-6.
12. Wenliao Du, Jianfeng Tao, Yanming Li, Chengliang Liu. Wavelet leaders multifractal features based fault diagnosis of rotating mechanism. Mechanical Systems and Signal Processing, 2014, Vol. 43, Iss. 1–2, pp. 57–75. DOI: https://doi.org/10.1016/j.ymssp.2013.09.003.
13. Dong, D. W., Hopfield, J. J., Unnikrishnan, K. P. Neural Networks for Engine Fault Diagnostics. In: Proceedings of the 1997 IEEE Workshop, 1997, pp. 636–644.
14. Kobayashi, T., Simon, D. L. A Hybrid Neural Network-Genetic Algorithm Technique for Aircraft Engine Performance Diagnostics. In: Proceedings of the 37th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Salt Lake City, Utah, 2001, paper no. AIAA‑2001–3763.
15. Sadollah, A., Travieso-Gonzalez, C. M. [Eds]. Recent Trends in Artificial Neural Networks: from Training to Prediction. London, IntechOpen, 2020, 150 p. ISBN 978-1-78985-420-6.
16. Luo, Qiwu; Yigang, He; Sun, Yichuang. Timeefficient fault detection and diagnosis system for analog circuits. Automatika, 2018, Vol. 59, pp. 303–311. DOI: 10.1080/00051144.2018.1541644.
17. Ma, Y., Han, R., Wang, W. Prediction-Based Portfolio Optimization Models Using Deep Neural Networks. IEEE access, 2020, Vol. 8, pp. 115393–115405. DOI: 10.1109/ACCESS.2020.3003819.
18. Song, J., Xue, G., Pan, X., Ma, Y., Li, H. Hourly Heat Load Prediction Model Based on Temporal Convolutional Neural Network. IEEE access, 2020. Vol. 8, pp. 16726–16741. DOI: 10.1109/ACCESS.2020.2968536.
19. Yüce, A., Nur Deniz, F., Tan, N.Interactive Analysis of Integer Order Approximation Methods in LabVIEW Environment. 1st International Mediterranean Science and Engineering Congress (IMSEC 2016), Çukurova University, Congress Center, October 26–28, 2016, Adana / TURKEY, paper ID 686, pp. 2357–2365. [Электронный ресурс]: https://www.researchgate.net/profile/Furkan-Deniz/publication/348326399_Kesir_dereceli_transfer_fonksiyonlari_icin_tamsayi_dereceli_yaklasim_yontemlerinin_LabVIEW_ortaminda_interaktif_analizi_Interactive_Analysis_of_Integer_Order_Approximation_Methods_in_LabVIEW_Environme/links/5ff82609a6fdccdcb83b7523/Kesir-dereceli-transferfonksiyonlari-icin-tamsayi-dereceli-yaklasim-yoentemlerininLabVIEW-ortaminda-interaktif-analizi-Interactive-Analysis-ofInteger-Order-Approximation-Methods-in-LabVIEWEnvironm.pdf?_tp=eyJjb250ZXh0Ijp7ImZpcnN0UGFnZSI6InB1YmxpY2F0aW9uIiwicGFnZSI6InB1YmxpY2F0aW9u In19. Доступ 27.11.2023.
20. Ruiz de Miras, J. Fractal Analysis in MATLAB: ATutorial for Neuroscientists. In: A. Di Ieva (ed.). The Fractal Geometry of the Brain, Springer Series in Computational Neuroscience, 2016, pp. 523–532. DOI: 10.1007/978-1-4939-3995-4_33.
21. Yue Gao, Dai-Jun Zhang, Cui-Na Jiao, Ying-Lian Gao, Jin-Xing Liu. Spatial Domain Identification Based on Graph Attention Denoising Auto-encoder, 2023. In: Advanced Intelligent Computing Technology and Applications: 19th International Conference, ICIC 2023, Zhengzhou, China, August 10–13, 2023, Proceedings, Part III, pp. 359–367. DOI: https://doi.org/10.1007/978-981-99-4749-2_31.
22. Abdelmaksoud, M., Torki, M., El-Habrouk, M., Elgeneidy, M. Convolutional-neural-network-based multisignals fault diagnosis of induction motor using single and multi-channels datasets. Alexandria Engineering Journal, 2023, Vol. 73, pp. 231–248. DOI: 10.1016/j.aej.2023.04.053.
23. Jian Zhang, Yangqian Meng, Dai Liu, Long Liu, Xiuzhen Ma, Changzhao Jiang, Xiannan Li, Li Huang. Modelling and multi-objective combustion optimization of marine engine with speed maintaining control target. Thermal science and engineering progress, 2023, Vol. 41, pp. 12–18. DOI: 10.1016/j.tsep.2023.101852.
24. Chao Luo, Haiyue Wang. Fuzzy forecasting for long-term time series based on time-variant fuzzy information granules. Applied soft computing, 2020, Vol. 88, pp. 65–72. DOI: 10.1016/j.asoc.2019.106046 [ограниченный доступ].
25. Zhou, W., Wu, J., Liu, A., Zhang, W. A., Yu, L. Neurodynamics-based distributed model predictive control of a low-speed two-stroke marine main engine power system. ISA Transactions, 2023, Vol. 138, pp. 341–358. DOI: 10.1016/j.isatra.2023.03.006.
26. Zhenyi Kuai, Guoyong Huang. Fault Diagnosis of Diesel Engine Valve Clearance Based on Wavelet Packet Decomposition and Neural Networks. Electronics, 2023, Vol. 12, 353. DOI: 10.3390/electronics12020353.
27. Ofner, A. B., Kefalas, A., Posch, S., Pirker, G., Geiger, B. C. In-cylinder pressure reconstruction from engine block vibrations via a branched convolutional neural network. Mechanical systems and signal processing, 2023. Vol. 183, 109640. DOI: 10.1016/j.ymssp.2022.109640.
Рецензия
Для цитирования:
Епихин А.И., Кондратьев С.И., Хекерт Е.В. Диагностика судовых двигателей на основе вейвлет-нейронной сети и сканирования изображений с помощью программируемой логической логической схемы. Мир транспорта. 2023;21(6):110-118. https://doi.org/10.30932/1992-3252-2023-21-6-13
For citation:
Epikhin A.I., Kondratiev S.I., Khekert E.V. Diagnostics of Ship Engines Based on Wavelet Neural Network and Image Scanning Using Programmable Logic Circuit. World of Transport and Transportation. 2023;21(6):110-118. https://doi.org/10.30932/1992-3252-2023-21-6-13