Study of an Asynchronous Traction Motor with Inclined Slot Rotor
https://doi.org/10.30932/1992-3252-2023-21-6-7
Abstract
Modernisation of railway rolling stock which is quite relevant from the perspective of growing performance of railways can be achieved among other ways through improvement of features of traction drive, namely of traction electric motors, that defined the objective of the study.
The inclined shape of the rotor slots is characteristic of a proposed design of asynchronous traction electric motor with a squirrel-cage rotor winding for a passenger electric locomotive which features are subject to the analysis.
The results of experimental and computer modelling confirmed the positive effect of using a rotor with inclined slots in the design of an asynchronous traction motor, which consists in reducing the current in the windings and reducing motor power losses.
The obtained results of improving the technical features of an asynchronous traction motor due to the use of a rotor with inclined slots in its design allow expand recommendation for its use on locomotives.
About the Authors
A. S. ZuevRussian Federation
Zuev, Alexander S., Ph.D. student at the Department of Electric Trains and Locomotives
Russian Science Citation Index Author ID: 836869.
Moscow
M. D. Glushchenko
Russian Federation
Glushchenko, Mikhail D., D.Sc. (Eng), Professor at the Department of Electric Trains and Locomotives
Moscow
References
1. Yang, Yu. Synchronous Machine for Unidirectional Application. Master thesis. Stockholm: Royal Institute of Technology, 2012. [Electronic resource]: https://studylib.net/doc/18711791/synchronous-machine-for-unidirectional-application?ysclid=ls4osyiv8h214895671. Last accessed 26.07.2023.
2. Petrov, I., Ponomarev, P., Pyrhönen, J.Asymmetrical Geometries in Electrical Machines. International Review of Electrical Engineering, 2016, February, Vol. 11, Iss. 1. DOI: 10.15866/iree.v11i1.7739.
3. Zahangir, T.Analysis of asymmetrical features of an electric machine. Master of Scinece Thesis. Gothenburg, Chalmers University of Technology, 2018. [Electronic resource]: https://publications.lib.chalmers.se/records/fulltext/256298/256298.pdf. Last accessed 26.07.2023.
4. Vinogradov, A. A., Shishov, A. V., Sedov, M. K., Kairov, A. A., Sidorov, A. O. Patent holder Shishov, A. V. Patent RU180432U1 Russian Federation, IPC N02K 99/00. Electric motor with oblique magnetic fields / No. 2017120558; application 14.06.17; publ. 14.06.18, Bulletin No. 17. [Electronic resource]: https://patents.google.com/patent/RU180432U1/ru. Last accessed 26.07.2023.
5. Gervais, G. K. Windings of electrical machines [Obmotki elektricheskikh mashin]. Leningrad, Energoatomizdat publ., 1989, 400 p. ISBN: 5–283–04458–0.
6. Ivanov-Smolensky, A. V. Electromagnetic fields and processes in electrical machines and their physical modelling [Elektromagnitnie polya i protsessy v elektricheskikh mashinakh i ikh fizicheskoe modelirovanie]. Moscow, Energia publ., 1969, 304 p.
7. Nakhodkin, M. D., Vasilenko, G. V., Bocharov, V. I., Kozorezov, M. A. Design of traction electric machines [Proektirovanie tyagovykh elektricheskikh mashin]. Moscow, Transport publ., 1976, 624 p.
8. Zarifyan, A. A. Increasing the energy efficiency of passenger electric locomotives with an asynchronous traction drive when powered from a DC network. Abstract of Ph.D. (Eng) thesis [Povyshenie energeticheskoi effektivnosti passazhirskikh elektrovozov s asinkhronnym tyagovym privodom pri pitanii ot seti postoyannogo toka. Avtoref. diss… kand.tekh.nauk]. Rostov-on-Don, RSTU publ., 2016, 24 p. [Electronic resource]: https://rusneb.ru/catalog/000199_000009_006653235/. Last accessed 26.07.2023.
9. Avtaikin, I. N., Kvon, A. M. Comparative analysis of the efficiency of using active materials of radial and axial asynchronous electric drive machines of technological installations [Sravnitelniy analiz effektivnosti ispolzovaniya aktivnykh materialov radialnykh i aksialnykh asinkhronnykh mashin elektroprivoda tekhnologicheskikh ustanovok]. News of higher educational institutions. Food technology, 2019, Iss. 1 (367), pp. 70–73. EDN: YZILPF.
10. Kazakov, Yu. B., Stulov, A. V., Nikiforov, M. I., Kiselev, M. A. Development and research of a traction synchronous electric motor with magnets incorporated into the rotor for an electric vehicle [Razrabotka i issledovanie tyagovogo sinkhronnogo elektrodvigatelya s inkorporirovannymi v rotor magnitami dlya elektromobilya]. Issues of electrotechnology, 2022, Iss. 2 (35), pp. 89–97. EDN: VRBTEM.
11. Chirkov, D. A., Klyuchnikov, A. T., Korotaev, A. D., Timashev, E. O. Comparison of methods for calculating electromagnetic processes using the example of a cylindrical linear valve motor [Sravnenie metodov rascheta elektromagnitnykh protsessov na primere tsilindricheskogo lineinogo ventilnogo dvigatelya]. Bulletin of the Perm National Research Polytechnic University. Electrical engineering, information technology, control systems, 2018, Iss. 28, pp. 76–91. EDN: VQADWU.
12. Ermolaev, A. I., Gordeev, B. A., Okhulkov, S. N., Titov, D.Yu. Software program for studying magnetic noise and vibration of an asynchronous electric motor. Certificate of registration of the computer program 2022669927, 26.10.2022. Application № 2022669399 dated 21.10.2022. EDN: KNGBEV.
13. Ermolaev, A. I., Erofeev, V. I., Plekhov, A. S., Titov, D. Yu. Study of magnetic vibration of an asynchronous electric motor using FEM modelling [Issledovanie magnitnoi vibratsii asinkhronnogo elektrodvigatelya posredstvom MKEmodelirovaniya]. Intelligent Electrical Engineering, 2021, Iss. 3 (15), pp. 37–56. EDN: QZGGPR.
14. Sirotkin, V. V., Pigalev, D. A., Bolshikh, I. V., Chernyaev, S. S.Application of specialized software for calculating the distribution of the magnetic field in the turns of the stator winding of switched reluctance electric motors [Primenenie spetsializirovannogo programmnogo obespecheniya dlya rascheta raspredeleniya magnitnogo polya v vitkakh obmotki statora ventilno-induktornykh elektrodvigatelei]. Innovative transport systems and technologies, 2022, Vol. 8, Iss. 4, pp. 58–73. EDN: RFMZKH.
15. Simakov, A.V., Ognevsky, A. S. Modelling the operating modes of a traction electric motor using the finite element method [Modelirovanie rezhimov raboty tyagovogo elektrodvigatelya metodom konechnykh elementov]. In: Innovative projects and technologies in education, industry and transport. Materials of the scientific conference dedicated to the Day of Russian Science. Omsk, OmGUPS publ., 2019, pp. 196–201. EDN: UZOSKZ.
16. Avdeev, A. I. Automation of calculation of the magnetic field of an asynchronous electric motor in the FEMM program [Avtomatizatsiya rascheta magnitnogo polya asinkhronnogo elektrodvigatelya v programme FEMM]. In: the collection. «Information technologies, energy and economics (electric power, electrical engineering and thermal power engineering, mathematical modeling and information technology in production)». Proceedings of XVIII international scientific and technical conferences of students and Ph.D. students: in 3 volumes. Vol.1. Smolensk, 2021, pp. 121–126. EDN: JXYDOE.
17. Volkov, S. V., Goryachev, O. V., Efromeev, A. G., Stepochkin, A. O. Calculation of the Parameters of a Mathematical Model of an Electric Hybrid Stepper Motor Based on the Analysis of the Magneto Static Field Pattern. Mekhatronika, Avtomatizatsiya, Upravlenie, 2019, Vol. 20, Iss. 8, pp. 482–489. https://doi.org/10.17587/mau.20.482–489.
Review
For citations:
Zuev A.S., Glushchenko M.D. Study of an Asynchronous Traction Motor with Inclined Slot Rotor. World of Transport and Transportation. 2023;21(6):60-64. https://doi.org/10.30932/1992-3252-2023-21-6-7