Unification of Onboard Traction Energy Storage Devices for Railway Rolling Stock
https://doi.org/10.30932/1992-3252-2023-21-6-6
Abstract
As the cost of traction lithium batteries decreases, many rolling stock models are being created that use them to receive recovery energy, equalise the load on the energy source, and ensure autonomous operation. The objective of the work is to show the advantages of separate design and production of onboard traction storage devices and the rolling stock using them, which will require standardisation of energy storage devices, as well as to outline the range of requirements that will need to be set when developing a standard, and to illustrate proposals by identifying possible requirements for weight, size and energy characteristics of a unified energy storage device. For this purpose, a review of approaches to the use of energy storage devices and modern designs of rolling stock on which traction batteries are used is followed by main scenarios for the use there-of.
Following identification of main processes of energy conversion by the traction drive of locomotives at various time intervals, the parameters of energy storage devices were assessed for a wide range of possible scenarios for their application using methods of traction theory.
The results obtained allowed calculating main characteristics of unified energy storage modules. A specific analysis was carried out to identify the limitations that determine energy intensity and power, weight, dimensions and method of mounting of storage devices, their rated voltage. Requirements are formulated for design of a standard mechanical, electrical and information interface of the proposed modules.
About the Author
M. V. YaroslavtsevKazakhstan
Yaroslavtsev, M. V., Ph.D. (Eng), Associate Professor at the Department of Electrical Engineering and Automation
SCOPUS Author ID 56532450300
Pavlodar
References
1. Prospects for traction batteries in railway transport [Perspektivy tyagovykh akkumulyatornykh batarei na zheleznodorozhnom transporte]. Zheleznie dorogi mira, 2023, Iss. 1, pp. 43–48. [Electronic resource]: https://zdmira.com/articles/perspektivy-tyagovykh-akkumulyatornykh-batarejna-zheleznodorozhnom-transporte. Last accessed 22.05.2023.
2. Battery traction recharges decarbonisation fight. [Electronic resource]: https://www.railjournal.com/in_depth/battery-traction-recharges-decarbonisation-fight/. Last accessed 22.05.2023.
3. Yu Miao, Hynan P., von Jouanne, A., Yokochi, A.Current Li-Ion Battery Technologies in Electric Vehicles and Opportunities for Advancements. Energies, 2019, Vol. 12, Iss. 6, Atricle ID 1074. DOI: 10.3390/en12061074.
4. Nezevak, V. L., Shatokhin, A. P. Features of the Traction Load for Determining the Parameters of the Electric Energy Storage Device. World of Transport and Transportation, 2018, Vol. 16, Iss. 2 (75), pp. 84–94. DOI: 10.30932/1992-3252-2018-16-2-8.
5. Loginova, E. Yu., Kuznetsov, G. Yu. Improving Traction Characteristics of a Diesel Locomotive with a Hybrid Power Plant. World of Transport and Transportation, 2022, Vol. 20, Iss. 3 (100), pp. 21–29. DOI: 10.30932/1992-3252-2022-20-3-3.
6. Valinsky, O. S., Evstafiev, A. M., Nikitin, V. V. On the issue of determining the energy storage capacity for traction rolling stock of railways [K voprosu opredeleniya emkosti nakopitelya energii dlya tyagovogo podvizhnogo sostava zheleznykh dorog]. Elektronika i elektrooborudovanie transporta, 2021, Iss. 2, pp. 8–11. [Electronic resource]: http://eet-journal.ru/upload/iblock/93a/l6167j3bpgez0e4eg5atib9ea6wqk2ei.pdf. Last accessed 22.05.2023.
7. Sychugov, A. N. Program for calculating the parameters of electrical energy storage devices for autonomous traction rolling stock: certificate of registration of the computer program. Reg. № 2022619798 dated 26.05.2022. Application № 2022618257 dated 05.05.2022.
8. Shevlyugin, M. V., Zhetov, K. S., Pletnev, D. S., Glushchenko, M. D. Experimental study of the autonomous operation of electric rolling stock in the metro [Eksperimentalnoe issledovanie avtonomnogoo khoda elektropodvizhnogo sostava metropolitena]. Elektrotekhnika, 2021, Iss. 9, pp. 19–21. – [Electronic resource]: http://www.znack93.ru/images/archive/2021/09–2021.pdf. Last accessed 22.05.2023.
9. Shtang, A. A., Yaroslavtsev, M. V.Catenary-battery shunting electric locomotive with energy storage based on lithium-ion batteries [Kontaktno-akkumulyatorniy manevroviy elektrovoz s nakopoitelem energii na osnove litii-ionnykh akkumulyatorov ]. Elektronika i elektrooborudovanie transporta, 2016, Iss. 1, pp. 13–16. [Electronic resource]: http://eet-journal.ru/upload/iblock/1f2/9t3gxgjb6vx070j9idtu2n7tp9k8gfv6.pdf. Last accessed 22.05.2023.
10. Yaroslavtsev, M. V., Shchurov, N. I., Anosov, V. N. Energy-efficient traction drive for urban trackless transport [Energoeffektivniy tyagoviy privod gorodskogo bezrelsovogo transporta]. Novosibirsk, NGTU publ., 2017, 135 p. ISBN 978-5-7782-3274-7.
11. Kuznetsov, G.Yu., Loginova, E.Yu. Improving the technical characteristics of autonomous locomotives with a lithium-ion traction battery [Povyshenie tekhniheskikh kharakteristik avtonomnykh lokomotivov s litii-ionnoi tyagovoi batareei]. Izvestiya Transsiba, 2022, Iss. 4 (52), pp. 57–65. [Electronic resource]: http://izvestia-transsiba.ru/images/journal_pdf/2022–4(52).pdf. Last accessed 22.05.2023.
12. Zhou Chengke, Qian Kejun, Allan, M., Zhou Wenjun. Modeling of the Cost of EV Battery Wear Due to V2G Application in Power Systems. IEEE Transactions on Energy Conversion, 2011, Vol. 26, рр. 1041–1050. DOI: 10.1109/TEC.2011.2159977.
13. Rosenkranz, C., Kohler, U., Liska, J. L. Modern battery systems for plug-in hybrid electric vehicles. Power, 2007, Vol. 1, 100. [Electronic resource]: https://dspace.tul.cz/server/api/core/bitstreams/b7580d40-7453-449d‑9200-7601400c6569/content. Last accessed 22.05.2023.
14. Spiridonov, E. A., Yaroslavtsev, M. V.Assessing the efficiency of using energy storage devices in quarry railway transport [Otsenka effektivnosti primeneniya nakopoitelei energii na kariernom zheleznodorozhnom transporte]. Gorniy infomatsionno-analiticheskiy byulleten, 2022, Iss. 12/2, pp. 241–256. DOI: 10.25018/0236_1493_2022_122_0_241.
15. Gallardo-Lozano, J., Romero-Cadaval, E., MilanesMontero, M. I., Guerrero-Martinez, M.A.Battery equalization active methods. Journal of power sources, 2021, Vol. 246, рр. 934–949. DOI: 10.1016/j.jpowsour.2013.08.026.
16. Xing Yinjiao, Ma Eden, W. M., Tsui Kwok, L., Pecht, M.Battery management systems in electric and hybrid vehicles. Energies, 2011, Vol. 4, Iss. 11, рр. 1840–1857. DOI: 10.3390/en4111840.
17. Nema, P., Muthukumar, P., Thangavel, R. Review on Thermal Management System of Li-Ion Battery for Electric Vehicle. In: Sustainable Energy Generation and Storage: Proceedings of NERC 2022, Springer Nature, 2023. рр. 165–184. DOI: 10.1007/978-981-99-2088-4_14.
18. Andryushchenko, A. A., Babkov, Yu. V., Zarifyan, A. A. [et al]. Asynchronous traction drive of locomotives [Asinkhronniy tyagoviy privod lokomotivov]. Moscow, TMC for education on railway transport, 2013, 413 p. ISBN 978-5-89035-631-4.
19. Shcherbakov, V. G., Petrushin, A. D., Khomenko, B. I., Sedov, V. I. Traction electric machines [Tyagovie elektricheskie mashiny]. Moscow, TMS for education on railway transport, 2016, 641 p. ISBN 978–5–89035–926–1.
Review
For citations:
Yaroslavtsev M.V. Unification of Onboard Traction Energy Storage Devices for Railway Rolling Stock. World of Transport and Transportation. 2023;21(6):48-59. https://doi.org/10.30932/1992-3252-2023-21-6-6