Possibility of Monitoring the Dynamic Impact of the Rolling Stock on the Track Superstructure Using Strain Gauges and Vibrometry
https://doi.org/10.30932/1992-3252-2023-21-4-2
Abstract
One of the priority tasks in development of railway transport is to raise its efficiency by increasing the time between repairs for both the track superstructure and the rolling stock. Solving this problem is impossible without timely, complete, and reliable information about the dynamics of interaction of the rolling stock with the infrastructure. To organise monitoring of dynamic processes, completely different types of primary transducers are used: resistance strain gauges, fibre-optic sensors, dynamometers (force sensor pads), accelerometers, acoustic emission sensors. This implies relevance of the scientific and technical problem of comparative testing of sensors of different types to assess the information content of their signals and justify the criteria for choosing primary transducers when solving specific monitoring problems.
The objective of the study is to comparatively test removable resistive strain sensors, optical polarisation strain sensors and accelerometers under a passing train and to evaluate their information content to control rail depression and detect defects on the running surface of wagon wheels.
The study using finite element modelling and a physical model of a rail as of a beam on an elastic foundation, substantiates the relationship between longitudinal deformations and vertical accelerations of the rail foot. Comparative tests of removable strain-resistive and optical polarisation strain sensors and accelerometers were held on an experimental section of track under a passing train. A signal processing algorithm has been developed and the equivalence of strain gauges and vibrometers for determining the depression of a rail under a passing train has been proven. Acomparison has been made of the pulse components of the signals of deformation and vibration acceleration during movement of a wheel with a defect on the running surface, and the requirements for the frequency characteristics of the sensors and their mounting on the rail surface have been substantiated.
Keywords
About the Authors
A. S. AdadurovRussian Federation
Adadurov, Aleksandr S., Ph.D. (Eng), General Director
St. Petersburg
V. N. Fedorinin
Russian Federation
Fedorinin, Victor N., Ph.D. (Eng), Leading Engineer
Novosibirsk
S. A. Bekher
Russian Federation
Bekher, Sergey A., D.Sc. (Eng), Associate Professor, Professor at the Department of Physics, Electrical Engineering, Diagnostics
and Control in Technical Systems
Novosibirsk
М. A. Gulyaev
Russian Federation
Gulyaev, Mikhail A., Ph.D. student
Novosibirsk
References
1. Krasnov, O. G., Bogdanov, O. K., Akashev, M. G. Dynamic forces and processes in the rails under impact interaction of wheels with defects. Russian Railway Science Journal, 2016, Vol. 75, Iss. 6, pp. 354–364. EDN: XCCLWT.
2. Pevzner, V. O., Petropavlovskaya, I. B., Tretyakov, V. V. [et al]. Comparative analysis of the impact on the track of wagons with different axial loads [Sravnitelniy analiz vozdeistviya na put vagonov s razlichnymi osevymi nagruzkami]. Introduction of modern structures and advanced technologies into track management, 2016, Vol. 9, Iss. 9 (9), pp. 68–75. EDN: WIMBQP.
3. Abdurashitov, A. Yu., Yurkova, Yu. N. On the interaction of track and rolling stock on high-speed traffic sections depending on the outline of the rail and wheel profiles [O vzaimodeistvii puti i podvizhnogo sostava na uchastkakh skorostnogo dvizheniya v zavisimosti ot ochertaniya profilei relsov i koles]. Modern technologies. System analysis. Modeling, 2022, Iss. 1 (73), pp. 170–177. DOI: 10.26731/1813-9108.2022.1(73).170-177. EDN: CICMUB.
4. Kruglov, V. M., Khokhlov, A. A., Savrukhin, A. V. Model of Dynamic Interaction of Rolling Stock and Track [Model dinamicheskogo vzaimodeistviya podvizhnogo sostava i puti]. World of Transport and Transportation, 2011, Vol. 9, Iss. 5 (38), pp. 8–11. EDN: OKMCQP.
5. Krasnov, O. G., Efimenko, A. V., Akashev, M. G. The influence of defects on the wheel running surface on the service life of the side frames of cargo wagons [Vliyanie defektov na poverkhnosti kataniya koles na resurs bokovykh ram gruzovykh vagonov]. Vagony i vagonnoe khozyaistvo, 2014, Iss. 2 (38), pp. 45–48. EDN: SEQIZX.
6. Increasing the reliability and service life of wheelsets and rails [Povyshenie nadezhnosti i sroka sluzhby kolesnykh par i relsov]. Zheleznie dorogi mira, 2011, Iss. 3, pp. 54–61. EDN: NUGVEZ.
7. Kogan, A. Ya. Impact on the track of trains containing wagons with sliders on wheelsets [Vozdeistvie na put poezdov, imeyushchikh v svoem sostave vagony s polzunami na kolesnykh parakh]. Bulletin of the Scientific Research Institute of Railway Transport, 2014, Iss. 3, pp. 3–8. EDN: TOLHCB.
8. Zakharov, S. M., Pogorelov, D. Yu., Simonov, V. A. Analysis of the influence of carriages and track parameters on the wear rate in the wheel–rail system (based on a full factorial experiment) [Analiz vliyaniya parametrov ekipazhei i puti na intensivnost iznosa v sisteme koleso-rels (na osnove polnogo faktornogo eksperimenta)]. Bulletin of the Scientific Research Institute of Railway Transport, 2010, Iss. 2, pp. 31–35. EDN: MEGPGL.
9. Bondarev, E. S. Forecasting the technical condition of rails based on statistical data [Prognozirovanie tekhnicheskogo sostoyaniya relsov po statisticheskim dannym]. Bulletin of the Siberian State Transport University, 2021, Iss. 4 (59), pp. 55–61. DOI: 10.52170/1815-9265_2021_59_55. EDN: HLDMQB.
10. Makhutov, N. A., Kossov, V. S., Oganyan, E. S., Volokhov, G. M., Ovechnikov, M. N., Protopopov, A. L. Prediction of contact-fatigue damage to rails using computational-experimental methods. Industrial laboratory. Diagnostics of materials, 2020, Vol. 86, Iss. 4, pp. 46–55. DOI: 10.26896/1028-6861-2020-86-4-46-55. EDN: UXMYMI.
11. Gromakov, M. S., Tarmaev, A. A., Bespalko, S. V. An energy criterion for estimating the remaining wheel stability from the rolling of the flange onto the railhead during the motion of a wheelset along a straight section. Modern technologies. System analysis. Modeling, 2021, Iss. 1(69), pp. 104–111. DOI: 10.26731/1813-9108.2021.1(69).104-111. EDN: DIETDK.
12. Markov, A. A., Maksimova, E. A., Antipov, A. G. Analysis of the development of rail defects based on the results of multi-channel periodic monitoring [Analiz razvitiya defektov relsov po rezultatam mnogokanalnogo periodicheskogo kontrolya]. Defektoskopiya, 2019, Iss.12, pp. 3–15. DOI: 10.1134/S0130308219120017. EDN: CQVYYL.
13. Markov, A. A., Maksimova, E. A. Analysis of effectiveness of ultrasonic and magnetic channels of flaw detection systems when inspecting rails [Analiz effektivnosti ultrazvukovykh i magnitnykh kanalov defektoskopicheskikh kompleksov pri kontole relsov]. Vestnik IzhGTU imeni M. T. Kalashnikova, 2019, Iss. 2, Vol. 2, pp.22–32. EDN: HNQVES.
14. Boronenko, Yu. P., Rahimov, R. V., Grigoriev, R. Yu., Popov, V. V. Analysis of methods for measuring the force effect of rolling stock on the track and the wheel control systems when the train is moving. Izvestiya Peterburgskogo universiteta putei soobshcheniya, 2020, Vol. 17, Iss. 3, pp. 324–344. DOI: 10.20295/1815-588X-2020-3-324-344. EDN: PDIIKB.
15. Markov, A. A., Maksimova, E. A., Antipov, A. G. Dynamic correction of sensitivity of flaw detection channels during high-speed rail inspection [Dinamicheskaya korrektsiya chustvitelnosti defektoskopicheskikh kanalov pri vysokoskorostnom kontrole relsov]. Defektoskopiya, 2021, Iss. 12, pp. 3–14. DOI: 10.31857/S0130308221120010. EDN: VMRTBG.
16. Korzhin, S. N., Mironenko, O. I., Melanin, V. M., Bespalko, S. V. Determination of the stress state of a freight wagon wheel from the reaction of the rail [Opredelenie napryazhennogo sostoyaniya kolesa gruzovogo vagona ot reaktsii relsa]. Nauka i tekhnika transporta, 2021, Iss. 4, pp. 8–12. DOI: 10.53883/20749325_2021_04_08. EDN: FCPDYF.
17. Boronenko, Yu. P., Tretyakov, A. V., Zimakova, M. V. Digital software and hardware platform for automated monitoring of the technical condition of rolling stock and the railway track while the Rubezh train is running [Tsifrovaya programmno-apparatnaya platform dlya avtomotizirovannogo monitoring tekhnicheskogo sostoyaniya podvizhnogo sostava i zheleznodorozhnogo puti na khodu poezda Rubezh]. Proceedings of scientific-practical conference of JSC VNIIZhT «Science 1520 VNIIZhT: Look beyond the horizon» (26–27 August 2021). Shcherbinka, JSC VNIIZhT, 2021, pp. 38–44. EDN: OEVRPB.
18. Boronenko, Yu. P., Rakhimov, R. V., Petrov, A. A. Piecewise continuous measurement of forces between the wheel and the rail using shear stresses in two sections of the rail [Kusochno-nepreryvnoe izmerenie sil mezhdu kolesom irelsom po kasatelnym napryazheniyam v dvukh secheniyakh relsa]. Transport Rossiiskoi Federatsii, 2018, Iss. 3 (76), pp. 58–64. EDN: XRLKOD.
19. Romen, Yu. S., Suslov, O. A., Balyaeva, A. A. Determination of interaction forces in the wheel-rail system based on measuring stresses in the rail web [Opredelenie sil vzaimodeistviya v sisteme koleso-rels na osnovanii izmereniya napryazhenii v sheike relsa]. Bulletin of the Scientific Research Institute of Railway Transport, 2017, Vol. 76, Iss. 6, pp. 354–361. DOI: 10.21780/2223-9731-2017-76-6-354-361. EDN: YKHKDN.
20. Kossov, V. S., Gapanovich, V. A., Lunin, A. A. [et al]. On the issue of determining lateral forces in heavy traffic conditions [Kvoprosu opredeleniya bokovykh sil v usloviyakh tyazhelovesnogo dvizheniya]. Zheleznodorozhniy transport, 2018, Iss. 5, pp. 46–51. EDN: XMGKWD.
21. Manshin, Yu. P., Manshina, E. Yu., Geue, M. About the dynamic error of strain gauge torque measuring devices. Journal of Physics: Conference Series, Volume 2131, Mathematical modeling and computational methods in problems of electromagnetism, electronics and physics of welding, 052041. DOI: 10.1088/1742-6596/2131/5/052041.
22. Dobrovolsky, P. P., Kremis, I. I., Fedorinin, V. N., Sidorov, V. I. Comparative Analysis of the Frequency Responses of Vibration of Rotary Type Microcryogenic Machines. Optoelectronics, Instrumentation and Data Processing, 2021, Vol. 57, Iss. 2, pp. 202–207. DOI: 10.3103/S8756699021020060. EDN: ZYTNZV.
23. Sychev, V. P., Shabalin, N. G., Loktev, A. A. [et al]. Calculation of the vibration impact on the track of passenger trains at high speeds to ensure safety and comfort of passengers and train crews [Raschet vibratsionnogo vozdeistviya na put passazhirskikh poezdov s povyshennymi skorostyami dvizheniya dlya obespecheniya bezopasnosti i komfortnosti passazhirov i poezdnykh brigad]. Nauka i tekhnika transporta, 2020, Iss. 3, pp. 110–115. EDN: IHCSZB.
24. Ma, Z., Chung, J., Liu, P., Sohn, H. Bridge displacement estimation by fusing accelerometer and strain gauge measurements. Structural Control and Health Monitoring, 2021, Vol. 28, Iss. 6, e2733. DOI: https://doi.org/10.1002/stc.2733 [restricted access].
25. Fedorinin, V. N. Patent No. 2157513 C1 Russian Federation, IPC G01J 4/04. Ellipsometric sensor: No. 99104550/28: appl. 05.03.1999: publ. 10.10.2000; applicant: Design and Technological Institute of Applied Microelectronics SB RAS. EDN: QDFVXB.
26. Kucheryaviy, V. I., Milkov, S. N. Reliability of a gas and oil pipeline in linearly elastic soil during bending [Nadezhnost gazonefteprovoda v lineino uprugom grunte pri izgibe]. Problems of mechanical engineering and machine reliability, 2017, Iss. 2, pp. 125–130. EDN: YKVAXB.
Review
For citations:
Adadurov A.S., Fedorinin V.N., Bekher S.A., Gulyaev М.A. Possibility of Monitoring the Dynamic Impact of the Rolling Stock on the Track Superstructure Using Strain Gauges and Vibrometry. World of Transport and Transportation. 2023;21(4):12–20. https://doi.org/10.30932/1992-3252-2023-21-4-2