Preview

World of Transport and Transportation

Advanced search

Physical Modelling in Development of the Regulatory Framework for Transport Construction

https://doi.org/10.30932/1992-3252-2023-21-2-8

Abstract

Application of the physical modelling method to justify regulatory requirements for design of structures for engineering protection of transport facilities from wave action is considered using the example of three completed research and development works. The described experimental studies of interaction of waves with structures were carried out in wave basins and tanks.
The objective of the research is to scientifically substantiate the requirements of regulatory documents for design of shore protection to ensure safe operation of the roadbed of railways and roads, bridge supports, and other transport structures operated under conditions of wave action on the shores of seas and lakes. In this case, the normalised parameters, depending on the hydrological (wind-wave and sea-level regimes of the water area and current), geological-morphological and lithodynamic (coastal zone dynamics) conditions are the types of protective structures used, planned and design solutions for protective hydraulic structures (location, elevations, dimensions), as well as the materials and products used for construction (including quality requirements).
The experimental design part of the described studies was carried out by the method of physical (hydraulic) modelling in wave basins and tanks. Physical modelling was carried out in accordance with the theory of similarity. At the same time, a «flat problem» is solved in wave tanks, and a «spatial problem» is solved in wave basins.

About the Author

G. V. Tlyavlina
Scientific Research Centre «Sea Coasts», subdivision of JSC Central Research Institute of Transport Construction
Russian Federation

Tlyavlina, Galina V., Ph.D. (Eng), Head of the Laboratory for Modelling, Calculations and Regulation in Hydraulic Engineering

Sochi 



References

1. Tlyavlina, G. V., Tlyavlin, R.M. Technical regulation in the field of designing shore protection structures [Tekhnicheskoe regulirovanie v oblasti proektirovaniya beregozashchitnykh sooruzhenii]. Gidrotekhnika, 2018, Iss. 3, pp. 70–72. [Electronic resource]: https://tsniis.choose.digital/texnicheskoe-regulirovanie-v-oblasti-proektirovaniyaberegozashhitnyx-sooruzhenij/. Last accessed 22.03.2023.

2. Ashpiz, E., Savin, A., Tlyavlin, R., Tlyavlina, G. Urgent issues of anti-deformation measures to protect coastal railways. Proceedings of the 14th MEDCOAST Congress on Coastal and Marine Sciences, Engineering, Management and Conservation (Marmaris, Turkey, 22–26 October 2019), 2019, Vol. 2, pp. 841–852. [Electronic resource]: https://www.elibrary.ru/item.asp?id=43226040. Last accessed 22.03.2023.

3. Tlyavlin, R.M. Problems of inspection and monitoring of structures of engineering protection of the coastal zone [Problemy obsledovaniya i monitoring sooruzhenii inzhenernoi zashchity beregovoi zony]. Olympic Legacy and Large-Scale Events: Impact on the Economy, Ecology and Socio-Cultural Sphere of Host Destinations: Proceedings of 11th International Scientific and Practical Conference (Sochi, November 14–15, 2019). Sochi, Editorial publishing centre of SSU FSBEI HE, 2019, pp. 244–248. [Electronic resource]: https://www.elibrary.ru/item.asp?id=41552411. Last accessed 22.03.2023.

4. Ashpiz, E. S., Savin, A. N., Yavna, V.A. Protection of the railway line Tuapse-Adler from dangerous landslip and rockslide processes. Zheleznodorozhniy transport, 2017, Iss. 7, pp. 52–57. [Electronic resource]: https://www.elibrary.ru/item.asp?id=29670918. Last accessed 22.03.2023.

5. Tlyavlin, R.M. Assessment of the technical condition of wave suppression structures for engineering protection of the roadbed from wave action [Otsenka tekhnicheskogo sostoyaniya volnogasyashchikh sooruzhenii inzhenernoi zashchity zemlyanogo polotna ot volnovogo vozdeistviya]. Izvestiya PEterburskogo universiteta putei soobshcheniya. St.Petersburg, PGUPS publ., 2020, Vol. 17, Iss. 2, pp. 198–209. DOI: 10.20295/1815-588Х‑2020–2–198–209.

6. Gorlova, A. A., Ivanenko, A. N., Ivanenko, N. A., Makarov, K. N. et al. Some issues of designing offshore hydraulic structures [Nekotorie voprosy proektirovaniya morskikh gidrotekhnicheskikh sooruzhenii]. Sochi, Sochi State University, 2015, 230 p. ISBN 978-5-88702-550-6.

7. Rogachko, S. I., Shunko, N.V. Scientific support of projects of offshore hydraulic structures. Gidrotekhnicheskoe stroitelstvo, 2021, Iss. 11, pp. 5–10. [Electronic resource]: https://www.elibrary.ru/item.asp?id=47241528. Last accessed 22.03.2023.

8. Frostick, L. E., McLelland, S. J., Mercer, T. G. Users guide to physical modelling and experimentation. London, Taylor & Francis Group, 2011, 272 p. DOI: 10.1201/b11335. ISBN 9780415609128.

9. Sharp, J.J. Hydraulic Modelling. Transl. from English by L.A. Yaskin; Ed. by S. S. Grigoryan. Moscow, Mir publ., 1984, 280 p. [Electronic resource]: https://rusist.info/book/5998066. Last accessed 22.03.2023.

10. Tlyavlina, G. V., Tlyavlin, R.M. Experimental studies of effectiveness of wave suppression structures on tidal seas [Eksperimentalnie issledovaniya effektivnosti volnogasyashchikh sooruzhenii na prilivnykh moryakh]. Seas of Russia: fundamental and applied research: Abstracts of the All-Russian Scientific Conference, Sevastopol, September 23–28, 2019. Sevastopol, Federal State Budgetary Institution of Science, Federal Research Centre «Marine Hydrophysical Institute of the Russian Academy of Sciences», 2019, pp. 296–298. [Electronic resource]: https://www.elibrary.ru/item.asp?id=41144863. Last accessed 22.03.2023.

11. Tlyavlina, G. V., Petrov, V. A., Tlyavlin, R. M. Design features of coastal protection structures on the shores of tidal seas. Transport construction, 2016, Iss. 4, pp. 4–6. [Electronic resource]: https://rucont.ru/efd/427489 [limited access].

12. Petrov, V. A., Tlyavlina, G. V., Yaroslavtsev, N. A. Physical Modeling of the Effect of Tidal Sea Level Fluctuations on Wave-Absorbing Pebble Beaches. Ecological Safety of Coastal and Shelf Zones of Sea, 2022, Iss. 3, pp. 54–70. DOI: 10.22449/2413-5577-2022-3-54-70.

13. Tlyavlina, G.V. Laboratory research of wave damping berms made of rubble mound and artificial armour units to protect the shores of tidal seas. Transport construction, 2022, Iss. 1, pp. 25–28. [Electronic resource]: https://www.elibrary.ru/item.asp?id=48551701. Last accessed 22.03.2023.

14. Tlyavlina, G. V., Makarov, K. N., Tlyavlin, R. M. The rationale for the main provisions of the manual of shore protection in tidal seas. Gidrotekhnicheskoe stroitelstvo, 2019, Iss. 1, pp. 42–46. [Electronic resource]: https://www.elibrary.ru/item.asp?id=36921765. Last accessed 22.03.2023.

15. 15 Lishchishin, I. V., Tlyavlina, G. V., Tlyavlin, R.M. Studies for design of bridge crossings in particularly difficult hydrological conditions [Issledovaniya dlya proektirovaniya mostovykh perekhodov v osobo slozhnykh gidrologicheskikh usloviyakh]. Gidrotekhnika, 2010, Iss. 3, pp. 36–37. [Electronic resource]: https://hydroteh.ru/upload/journals/files/Hydroteh_03_2010_file_pdf_66_1_1157.pdf. https://rucont.ru/efd/565254 Last accessed 22.03.2023.

16. Zuev, N. D., Shun’ko, A. S., Shun’ko, N.V. Investigation of Coefficient of Reflection of Waves Produced by a Rock-Fill Inclined Shore protection Structure. Power Technology and Engineering, 2019, Vol. 53, No. 1, pp. 29–32. DOI: 10.1007/s10749-019-01029-5.

17. Santamaría, M., Diaz-Carrasco, P., Moragues, M. V., Clavero, M., Losada, M. Uncertainties of the actual engineering formulas for coastal protection slopes. The dimensional analysis and experimental method. Proceedings of the 39th IAHR World Congress, 2022. DOI: 10.3850/IAHR-39WC252171192022900.

18. Tlyavlin, R. M., Makarov, K. N., Tlyavlina, G.V. Experimental studies of wave loads and impacts on wave dampening structures with a wave chamber [Experimentalnie issledovaniya volnovykh nagruzok na volnogasyashchie sooruzheniya s volnovoi kameroi]. Seas of Russia: fundamental and applied research: Abstracts of the All-Russian Scientific Conference, Sevastopol, September 23–28, 2019. Sevastopol, Federal State Budgetary Institution of Science FRC «Marine Hydrophysical Institute of the Russian Academy of Sciences», 2019, pp. 294–296. [Electronic resource]: https://www.elibrary.ru/item.asp?id=41144859. Last accessed 22.03.2023.

19. Vyaly, E. A., Makarov, K. N., Tlyavlina, G.V. Permeable constructions of artificial islands. Gidrotekhnicheskoe stroitelstvo, 2021, Iss. 12, pp. 21–28. [Electronic resource]: https://www.elibrary.ru/item.asp?id=47400315. Last accessed 22.03.2023.

20. Vyaly, E., Makarov, K., Tlyavlina, G. Permeable Constructions of Artificial Islands. Power Technology and Engineering, 2022, Vol. 56, Iss. 1, pp. 52–58. DOI: 10.1007/s10749-023-01470-7.


Review

For citations:


Tlyavlina G.V. Physical Modelling in Development of the Regulatory Framework for Transport Construction. World of Transport and Transportation. 2023;21(2):68−75. https://doi.org/10.30932/1992-3252-2023-21-2-8

Views: 222


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1992-3252 (Print)