Modelling of Air Passenger Transportation in Russia
https://doi.org/10.30932/1992-3252-2022-20-6-7
Abstract
The use of economic and mathematical methods of forecasting the results of activities of civil aviation organisations, and in particular assessment of the volume of air passenger traffic is quite relevant due to the importance of operational planning of air transport processes, development of strategic directions, technological and technical renewal of air enterprises.
The objective of the study is to plan the traffic flow of air passengers using a regression model, considering the results of multifactorial selection of determinants, particularly distinguishing fundamental macro indicators are distinguished, as well as significant indicators of the aviation market.
The study of passenger air transportation was carried out using methods of system analysis, methods of mathematical statistics and econometrics. Modelling of the process of passenger transportation has identified the main determinants that positively or negatively affect the dynamics of air passenger traffic. The multiple regression of the study of the processes of connectivity and synchronicity of changes in development of passenger traffic and selected macro indicators in a generalised form is the sum of vectors of influencing variables adjusted for the calculated coefficients.
Six-, four- and three-factor regression models were developed. The three-factor model turned to be more reliable with values most close to actual data. Nevertheless, while applying regression model for forecasting air traffic it is necessary to consider not only theoretical aspects, data of official forecasts of macro indicators but expert opinions as well.
About the Author
O. P. SushkoRussian Federation
Sushko, Olga P., Ph.D. (Economics), Associate Professor
Moscow
References
1. Kholopov, K. V., Sokolova, O. V., Ahtanina, M. O. State of the global and Russian markets for international air cargo. Rossiiskiy vneshneekonomicheskiy vestnik, 2019, Iss. 8, pp. 64–76. [Electronic resource]: https://www.elibrary.ru/item.asp?id=41045892&ysclid=lc6bvxgke7257279721. Last accessed 17.11.2022.
2. Russ, A. A., Smurov, M. Yu. State and problems of the air transportation market [Sostoyanie i problemy rynka aviaperevozok]. Vestnik Sankt-Peterburgskogo gosudarstvennogo universiteta grazhdanskoi aviatsii, 2016, Iss. 1 (10), pp. 5–19. [Electronic resource]: https://elibrary.ru/item.asp?id=26087017&ysclid=lc6c17l1kz444529577. Last accessed 17.11.2022.
3. Rublev, V. V. Prospects of air passenger market development within the Eurasian Economic Union in conditions of macroeconomic instability. Vestnik Samarskogo gosudarstvennogo ekonomicheskogo universiteta, 2020, Iss. 4 (186), pp. 18–37. [Electronic resource]: https://elibrary.ru/item.asp?id=43085853&ysclid=lc6c21bm9j918438433. Last accessed 17.11.2022.
4. Matveeva, A. V., Maltsev, A. A. Low-cost airlines as a vector of global air transport dynamic development. Rossiiskiy vneshneekonomicheskiy vestnik, 2017, Iss. 8, pp. 80–91. [Electronic resource]: https://elibrary.ru/item.asp?id=29898630&ysclid=lc6c2sikl1103823143. Last accessed 17.11.2022.
5. Gubenko, A. V., Rastova, Yu. I., Pankratova, A. R. The current state and prospects of passenger air transportation market development in Russia. Economics and Environmental Management, 2019, Iss. 2, pp. 82–90. DOI: 10.17586/2310-1172-2019-12-2-82-90.
6. Komaristiy, E. N. Information-model complex for researching the civil air transportation market [Informatsionno-modelniy kompleks dlya issledovaniya rynka grazhdanskikh aviaperevozok]. Novosibirsk, IEOPP SO RAS, 2006, 144 p. ISBN 5-89665-125-2.
7. Komaristiy, E. N. Mathematical approaches to the analysis of demand for passenger air transportation [Matematicheskie podkhody k analizu sprosa na passazhirskie aviaperevozki]. Marketing i marketingovie issledovaniya, 2004, Iss. 3, pp. 10–16. [Electronic resource]: https://elibrary.ru/item.asp?id=9270850 [limited access].
8. Shchetinin, E. Yu. Study of the impact of the Covid-19 pandemic on international air transportation. Discrete and Continuous Models and Applied Computational Science, 2021, Vol. 29, Iss. 1, pp. 22–35. DOI: 10.22363/2658-4670-2021-29-1-22-35.
9. Kravtsov, S. V. Analysis of the possibilities of implementing public-private partnership projects in certain segments of the Russian air transportation market [Analiz vozmozhnostei realizatsii proektov gosudarstvenno-chastnogo partnerstva v otdelnykh segmentakh rynka aviaperevozok Rossii]. Gumanitarnie i sotsialno-ekonomicheskie nauki, 2021, Iss. 6 (121), pp. 108–113. DOI: 10.18522/1997-2377-2021-121-6-108-113.
10. Savelieva, Yu. V. The Russian market of passenger air transportation under the conditions of economic instability [Rossiiskiy rynok passazhirskikh aviaperevozok v usloviyakh ekonomicheskoi nestabilnosti]. In: Friendship without borders: myth or reality. Proceedings of International Scientific-practical conference «Public Chamber of the Russian Federation; All-Russian public movement «Mothers of Russia»; Institute of Friendship of the Peoples of the Caucasus». Stavropol, 2017, pp. 508–510. [Electronic resource]: https://www.elibrary.ru/item.asp?id=32524718&pff=1. Last accessed 17.11.2022.
11. Moskvin, Sh. The development of civil aviation reveals a new round of problems [Razvitie grazhdanskoi aviatsii obnaruzhivaet noviy vitok problematiki]. Ekonomika i zhizn, 2014, Iss. 11 (9527). [Electronic resource]: https://www.eg-online.ru/article/241708/?ysclid=lc6cjczte2530028241. Last accessed 17.11.2022.
12. Kulyasov, V. M., Mukhametzhanova, A. O. Global passenger airflows in a pandemic crisis [Mirovie passazhirskie aviapotoki v usoviyakh pandemiinogo krizisa]. Aviatsionnie sistemy, 2021, Iss. 8, pp. 2–43. [Electronic resource]: https://www.elibrary.ru/item.asp?id=47116440 [limited access].
13. Kruglova, E. Yu. Civil aircraft market forecast. Rossiiskiy vneshneekonomicheskiy vestnik, 2015, Iss. 10, pp. 104–115. [Electronic resource]: https://elibrary.ru/item.asp?id=24899635&ysclid=lc6ckn1l62291745324. Last accessed 17.11.2022.
14. Samoylov, I. A., Stradomskiy, O. Y., Borodin, M. A., Lesnichiy, I. V., Samoylov, V. I. Tendencies and forecasts of development of the market of air service and park of airlines. Results of the last decade. Nauchniy vestnik GosNII GA, 2011, Iss. 1 (312), pp. 14–19. [Electronic resource]: https://elibrary.ru/item.asp?id=20145059&ysclid=lc6cl9q1jq150620564. Last accessed 17.11.2022.
15. Andribet, P., Baumgartner, M., Garot, J.-M. Reinventing European air traffic control based on the COVID-19 pandemic experience. Utilities policy, 2022, Vol. 75, 101343. DOI: 10.1016/j.jup.2022.101343.
16. Khachatryan, G. A. Forecasting of capacity of air transportation in Armenia. Ekonomika i biznes: teoriya i praktika, 2016, Iss. 12, pp. 149–161. [Electronic resource]: https://elibrary.ru/item.asp?id=27810648&ysclid=lc6cn2uh8f525805944. Last accessed 24.11.2022.
17. Kitov, V. V., Mishustina, M. V., Ustyuzhanin, A. O. Time series prediction survey of statistical, machine learning and deep learning methods: historical aspects. Voprosy Istorii, 2022, Vol. 4 (2), pp. 201–218. DOI: 10.31166/VoprosyIstorii202204Statyi40. [Electronic resource]: https://www.elibrary.ru/item.asp?id=48412303 [limited access].
18. Petukhova, A. V., Kovalenko, A. V. Methods for forecasting the development of complex systems using the theory of fuzzy cognitive map. Computational Mathematics and Information Technologies, 2022, Vol. 1, Iss. 2, pp. 81–95. DOI: 10.23947/2587-8999-2022-1-2-81-95.
19. Baykal, T., Ergezer, F., Terzi, S. Airport passenger forecast with time series: case of study Samsun Çarşamba Airport. Journal of Innovative Transportation, 2021, Vol. 2, Iss. 1. DOI: 10.53635/jit.958682.
20. Ghosh, R., Terekhov, I. Future Passenger Air Traffic Modelling: Trend Analysis of the Global Passenger Air Travel Demand Network. AIAA 2015–1642. Session: Systems Engineering I, 2015. DOI: 10.2514/6.2015-1642.
21. Ghosh, R., Kölker, K., Terekhov, I. Future Passenger Air Traffic Modelling: A theoretical Concept to integrate Quality of Travel, Cost of Travel and Capacity Constraints. 19 th World Conference of the Air Transport Research Society (ATRS), Singapore, 2015. [Electronic resource]: https://www.researchgate.net/publication/285577429_Future_Passenger_Air_Traffic_Modelling_A_theoretical_Concept_to_integrate_Quality_of_Travel_Cost_of_Travel_and_Capacity_Constraints. Last accessed 17.11.2022.
22. Chudy-Laskowska, K., Pisula, T. Seasonal Forecasting for Air Passenger Traffic. Proceedings of the 4 th International Multidisciplinary Scientific Conference on Social Sciences and Arts SGEM, 2017, pp. 681–692. DOI: 10.5593/sgemsocial2017/14/S04.089.
23. Wang, J., Liu. X., Ding, J. Air passenger travel forecasting model based on both dynamical individual behavior and social influence force. Journal of Algorithms & Computational Technology, 2019, Vol. 13. DOI:10.1177/1748302619881392.
24. Solvoll, G., Mathisen, T., Welde, M. Forecasting air traffic demand for major infrastructure changes. Research in Transportation Economics, 2020, Vol. 82, art. 100873. DOI: 10.1016/j.retrec.2020.100873.
25. Suryan, V. Econometric Forecasting Models for Air Traffic Passenger of Indonesia. Journal of the Civil Engineering Forum, 2017, Vol. 3, Iss. 1. DOI: 10.22146/jcef.26594.
Review
For citations:
Sushko O.P. Modelling of Air Passenger Transportation in Russia. World of Transport and Transportation. 2022;20(6):64-71. https://doi.org/10.30932/1992-3252-2022-20-6-7