Preview

World of Transport and Transportation

Advanced search

Energy Effect of the Degree of Hydration of Ethanol and the Air Excess Coefficient (a) on the Use of Ethanol-Gasoline Mixtures in Spark Ignition Engines

https://doi.org/10.30932/1992-3252-2022-20-4-10

Abstract

The objective of this study was to evaluate energetically the effect of hydration degree and mixture type (rich mixture α = 0,85 and lean mixture α = 0,15) on the use of ethanol and gasoline mixtures in spark ignition engines. The experiments were carried out in the Propulsion Laboratory of the Faculty of Engineering Sciences of Agrarian University of Havana (AUH). The JACTO model engine used has an effective power of 1,2 kW, speed 580 rpm, combustion chamber volume 34 cm3. Before combustion, the degree of ethanol hydration was determined (80 %; 85 %; 90 %; 95 %). Taking into account the influence of the percentage of purity of ethanol and air excess coefficient (α), when using combustible mixtures, analyses were carried out on the following parameters: air-fuel ratio (ra/f) and fuel-air ratio (rf/a); internal energy of combustion products (Uz); the number of moles of raw materials in the mixture for gasoline engines (M1) and the number of moles of products during combustion (M2). Based on the experimental work performed and the energy analysis of the combustion process, it was shown that the mixture of gasoline E-10-EH-80 % received more air and fuel than ratio necessary to achieve combustion, reaching 11,781 kg (air)/kg (fuel) for α = 0,85 and 15,309 kg (air)/kg (fuel) for α = 1,15. This is due to the fact that this is a mixture with increased moisture, because it contains more oxygen atoms, which impoverishes the mixture, and guarantees the best quality in the combustion process. But rich mixtures (α = 0,85) were the most energy efficient, which is associated with an increase in the octane number, that is, the antiknock ability of the fuel mixture used, which improves the quality of combustion, although it reduces the energy output during an explosion (detonation).

About the Authors

Y. R. Suarez
Agrarian University of Havana
Cuba

Reyes Suarex, Yarian, Ph.D. student at Russian University of Transport, Professor of Agrarian University of Havana

Mayabeque



V. N. Balabin
Russian University of Transport
Russian Federation

Balabin, Valentin N., D.Sc. (Eng), Professor

Moscow



References

1. Domínguez, F. S. La agroindustria bioenergética de la caña de azúcar: retos y perspectivas. In: La agroindustria cañera cubana: transformaciones recientes. Editor Mario González-Corzo, 2015, pp. 35–59. [Electronic resource]: https://cubaproject.org/wp-content/uploads/2014/07/SugarEbook.pdf. Last accessed 31.08.2022.

2. Reyes Suárez, Y., Arteaga Barrueta, M., Morejón Mesa, Y., Fuentes Sánchez, A. Valuation of the energy potential of the agroindustrial residuals of tomato for their employment as biofuel. Revista Ingeniería Agrícola, 2020, Vol. 10, No. 2. [Electronic resource]: https://www.redalyc.org/journal/5862/586263256006/. Last accessed 31.08.2022.

3. Baño, A., Darío, A., Quito, P., Gonzalo, H. Obtención de la mezcla combustible diésel con aceites lubricantes reciclados del automóvil en concentraciones de 5 %, 10 %, 15 %, 20 % y 30 % y determinación de los parámetros característicos del motor. Universidad de las Fuerzas Armadas ESPE Extensión Latacunga. Carrera de Ingeniería Automotriz, 2016. [Electronic resource]: http://repositorio.espe.edu.ec/handle/21000/11809. Last accessed 31.08.2022.

4. Aguilar-Rivera, N. Bioetanol de la caña de azúcar. Avances en Investigación Agropecuaria, 2007, Vol. 11, No. 3, pp. 25–39. [Electronic resource]: https://revistasacademicas.ucol.mx/index.php/agropecuaria/issue/view/60/22. Last accessed 31.08.2022.

5. Nosyrev, D. Ya., Kurmanova, L. S., Petukhov, S. A., Muratov, A. V., Erzamaev, M. P. Environmental Efficiency of Using Alternative Types of Fuel in Power Facility of Railway Transport. Ecology and Industry of Russia, 2019, Vol. 23, Iss. 2, pp. 19–23. DOI: https://doi.org/10.18412/1816-0395-2019-2-19-23.

6. Kossov, E. E., Sukhoparov, S. I. Optimization of operation modes of locomotive diesel generators [Optimizatsiya rezhimov raboty teplovoznykh dizelgeneratorov]. Proceedings of VNIIZhT. Moscow, Intext publ., 1999, 183 p. ISBN 5-89277-010-9.

7. Markov, V. A., Kozlov, S. I. Fuel supply of multi-fuel and gas-diesel engines [Toplivopodacha mnogotoplivnykh i gazodizelnykh dvigatelei]. Moscow, Publishing house of Bauman MSTU, 2000, 296 p. ISBN 5-7038-1565-7.

8. Fofanov, G. A. Natural gas – motor fuel for diesel locomotives [Prirodniy gaz – motornoe toplivo dlya teplovozov]. Journal «Zheleznie dorogi mira», 2006, Iss. 7, pp. 43–48. [Electronic resource]: https://zdmira.com/images/pdf/_dm2006–07_43–48.pdf. Last accessed 31.08.2022.

9. Nosyrev, D. Ya, Roslyakov, A. D., Muratov, A. V. Prospects and problems of using alternative fuels in locomotive power plants: Monograph [Perspektivy i problemy primeneniya alternativnykh vidov topliva v lokomotivnykh energeticheskikh ustanovkakh: Monografiya]. Samara, SamGUPS publ., 2009, 117 p. ISBN 978-5-98941-110-8.

10. Reyes Suárez, Y., Morejón Mesa, Y., Hernández Herranz, A. Thermodynamic Evaluation of Using Ethanol-Gasoline Blends in Spark Ignition Engine. Revista Ciencias Técnicas Agropecuarias, 2020, Vol. 29, No. 2. [Electronic resource]: https://www.redalyc.org/journal/932/93264060003/. Last accessed 31.08.2022.

11. Bogdanov, S. N., Burenkov, M. M., Ivanov, I. E. Automobile engines: «Section I. Fundamentals of technical thermodynamics and heat transfer» [Avtomobilnie dvigateli: «Razdel I. Osnovy tekhnicheskoi termodinamiki i teploperedachi»]. Moscow, Mashinostroenie publ., 1987, 367 p. [Electronic resource]: https://djvu.online/file/JxMwJZBbNBlEQ. Last accessed 31.08.2022.

12. Anokhin, V. I., Sakharov, A. G. Tractor driver’s manual: Section two «Tractor engines» [Posobie traktorista: Razdel vtoroi «Traktornie dvigateli»]. 2<sup>nd</sup> ed., rev. Moscow, Kolos publ., 1969, 424 p. [Electronic resource]: https://fr-lib.ru/books/professii/posobie-traktorista-download182810. Last accessed 31.08.2022.

13. Gurevich, A. M., Sorokin, E. M. Tractors and cars: «Second section. Fundamentals of the theory of tractor and automobile internal combustion engines» [Traktory i avtomobili: «Razdel vtoroi. Osnovy teorii traktornykh i avtomobilnykh dvigatelei vnutrennego sgoraniya»]. 4<sup>th</sup> ed., rev. End enl. Moscow, Kolos publ., 1978, 480 p. [Electronic resource]: https://djvu.online/file/lIFM9cZ1fzYDZ. Last accessed 31.08.2022.

14. Halderman, J. D., Mitchell, Ch. D. Automotive Engines: Theory and Servicing: Chapter 2. Principle of operation and types of engines. Transl. from Engl. and ed. by S. A. Dobrodeev. 4<sup>th</sup> ed. Moscow, Williams publ., 2006, 664 p. ISBN 5-8459-0954-6.

15. Kruglov, S. M. Device, maintenance and repair of passenger cars [Ustroistvo, tekhnicheskoe obsluzhivanie i remont legkovykh avtomobilei]. Moscow, Vysshaya shkola publ., 1987, 336 p. [Electronic resource]: https://fr-lib.ru/books/raznoe/kruglov-s-m—-ustroistvo-tekhnicheskoeobsluzhivanie-i-remont-legkovykh-avtomobileidownload602479. Last accessed 31.08.2022.


Review

For citations:


Suarez Y.R., Balabin V.N. Energy Effect of the Degree of Hydration of Ethanol and the Air Excess Coefficient (a) on the Use of Ethanol-Gasoline Mixtures in Spark Ignition Engines. World of Transport and Transportation. 2022;20(4):112-116. https://doi.org/10.30932/1992-3252-2022-20-4-10

Views: 247


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1992-3252 (Print)