Development of a Numerical Model of the Aerodynamic Interaction of a High-Speed Train, Air Environment and Infrastructure Facilities
https://doi.org/10.30932/1992-3252-2022-20-4-1
Abstract
The design of high-speed railway lines (HSR) requires mandatory consideration of loads from the aerodynamic interaction of a moving train, the air environment and infrastructure facilities, acting both on structures and facilities, and on the train itself. Software systems of computational fluid dynamics are most expedient to determine the nature and intensity of the load.
To find the optimal approach to modelling the processes of aerodynamic interaction between a moving high-speed train and the air environment, as well as to assess the degree of validity of the simulation, a series of calculations were performed in the ANSYS CFX software environment using various approaches to the construction of calculation models (the sliding grid method and the immersed solid method). An analysis of the results of the performed calculations makes it possible to determine the area of rational application of the considered approaches in the development of computational models of aerodynamic interaction.
To verify the developed calculation models, experimental measurements of the aerodynamic impact of Sapsan high-speed electric train on the air environment were performed. Also, the developed models were verified based on the results of similar international experimental studies. Comparison of the results of numerical simulation and experimental measurements allows us to conclude that the developed computational models are sufficiently valid and can be further applied.
About the Author
N. A. LabutinRussian Federation
Nikita A. Labutin
St. Petersburg, Emperor Alexander I
References
1. Smyrnov, V. N., Dyachenko, A. O., Dyachenko, L. K. The peculiarities of constructing bridges at high-speed mainline railroads. BRNI, 2017, Iss. 3, pp. 69−81. [Electronic resource]: http://brni.info/download/выпуск-24.pdf (full text of the issue). Last accessed 03.07.2022.
2. Vatulina, E. Ya., Komissarov, E. V., Polyakov, B. O., Vatulin, Ya. S. Design of protective structures for closelylocated structures of the railway infrastructure based on the methodology for assessing the aerodynamic influence of high-speed rolling stock [Proektirovanie zashchitnykh sooruzhenii priblizhennykh stroenii zheleznodorozhnoi infrastruktury na osnove metodiki otsenki aerodinamicheskogo vliyaniya vysokoskorostnogo podvizhnogo sostava]. Bulletin of scientific conferences, 2016, Iss. 4–2, pp. 26–34. [Electronic resource]: https://www.elibrary.ru/item.asp?id=26083569. Last accessed 03.07.2022.
3. Lazarenko, Yu. M., Kapuskin, A. N. Sapsan high-speed train’s aerodynamical action on passengers standing on platform and on oncoming train when meeting. Vestnik VNIIZhT, 2012, Iss. 4, pp. 11−14. [Electronic resource]: https://www.elibrary.ru/item.asp?id=17876171. Last accessed 03.07.2022.
4. Baker, С. J. A review of train aerodynamics. Part 1 – Fundamentals. The Aeronautical Journal, 2014, Vol. 118, Iss. 1201, pp. 201−228. DOI: https://doi.org/10.1017/S000192400000909X [access restricted for subscribers].
5. Baker, C. J. A review of train aerodynamics. Part 2 – Application. The Aeronautical Journal, 2014, Vol. 118, Iss. 1202, pp. 345−382. DOI: https://doi.org/10.1017/S0001924000009179 [access restricted for subscribers].
6. Kazakevich, M. N. Aerodynamics of bridges [Aerodinamika mostov]. Moscow, Transport publ., 1987, 240 p.
7. Airapetov, A. B., Katunin, A. V. Study of the pattern of aerodynamic interaction of a speed train moving under the structure of an automobile overpass on a direct motion installation [Issledovanie kartiny aerodinamicheskogo vzaimodeistviya skorostnogo poezda,dvizhushchegosya pod konstruktsiei atomobilnogo puteprovoda na ustanoke pryamogo dvizheniya]. In: Proceedings of XXVII scientifictechnical conference on aerodynamics, Zhukovsky, Moscow region, April 21–22, 2016. Central Aerohydrodynamic Institute named after prof. N. E. Zhukovsky (TsAGI), 2016, pp. 23–24. [Electronic resource]: https://www.elibrary.ru/item.asp?id=26232990. Last accessed 03.07.2022.
8. Smirnov, E. M., Zaitsev, D. K. Finite Volume Method as Applied to Problems of Hydraulic Gas Dynamics and Heat Transfer in Complex Geometry Fields [Metod konechnykh ob’emov v prilozhenii k zadacham gidrogazodinamiki i teploobmena v oblastyakh slozhnoi geometrii]. Nauchnotekhnicheskie vedomosti, 2004, Iss. 2, pp. 1−22. [Electronic resource]: https:// https://aero.spbstu.ru/publ/smirnov3.pdf. Last accessed 03.07.2022.
9. Gullberg, R. Computational Fluid Dynamics in OpenFOAM. Mesh Generation and Quality. TKP 4555 Advanced Process Simulation. Norwegian University of Science and Technology. Final Report, 2017. [Electronic resource]: https://folk.ntnu.no/preisig/HAP_Specials/AdvancedSimulation_files/2017/project%20reports/CFD/Rebecca%20Gullberg%20-%20CFD_Mesh_Report.pdf. Last accessed 03.07.2022.
10. Khayrulina, A., Blocken, B., Janssen, W., Straathof, J. CFD simulation of train aerodynamics: Traininduced wind conditions at an underground railroad passenger platform. Journal of Wind Engineering and Industrial Aerodynamics, 2015, Vol. 139, pp. 100−110. DOI:10.1016/j.jweia.2015.01.019.
11. Iliadis, P., Hemida, H., Soper, D., Baker, C. Numerical simulations of the separated flow around a freight train passing through a tunnel using the sliding mesh technique. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2019, Vol. 234, Iss. 6, pp. 638–654. DOI: https://doi.org/10.1177/0954409719851421.
12. Yebo, Liu; Hemida, H., Zhiming, Liu. Large eddy simulation of the flow around a train passing a stationary freight wagon. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2013, Vol. 228, Iss. 5, pp. 535–545. DOI: https://doi.org/10.1177/0954409713488096.
13. Valger, S. A., Fedorov, A. V., Fedorova, N. N. Simulation of incompressible turbulent flows in vicinity of bluff bodies with ANSYS Fluent.Vychislitelnie tekhnologii, 2013, Iss. 5, pp. 27−40. [Electronic resource]: https://www.elibrary.ru/item.asp?id=20345326. Last accessed 03.07.2022.
14. Loktev, A. A., Korolev, V. V., Poddaeva, O. I., Stepanov, K. D., Chernikov, I. Yu. Mathematical modelling of aerodynamic behaviour of antenna-mast structures when designing communication on railway transport.Vestnik VNIIZhT, 2018, Iss.2 (77), pp.77−83. DOI:10.21780/2223-9731-2018-77-2-77-83.
15. Maleki, S., Burton, D., Thompson, M. C. Assessment of various turbulence models (ELES, SAS, URANS and RANS) for predicting the aerodynamics of freight train container wagons. Journal of Wind Engineering and Industrial Aerodynamics, 2017, Vol. 170, pp. 68–80. DOI: https://doi.org/10.1016/j.jweia.2017.07.008 [access restricted for subscribers].
16. Zampieri, A., Rocchi, D., Schito, P., Somaschini, C. Numerical-experimental analysis of the slipstream produced by a high-speed train. Journal of Wind Engineering and Industrial Aerodynamics, 2019, Vol. 196, art. 104022. DOI:10.1016/j.jweia.2019.104022 [access restricted for subscribers].
17. Labutin, N. A., Dyachenko, L. K., Lang, A. V. Experimental measurements of rolling stock aerodynamics [Eksperimentalnie izmereniya aerodinamiki podvizhnogo sostava]. Vestnik Sibirskogo gosudarstvennogo universiteta putei soobshcheniya, 2022, Iss. 3 (62), pp. 40–48. DOI:10.52170/1815-9265_2022_62_40.
18. Hoffmeister, B. Lärmschutzwände an Hochgeschwindigkeitsstrecken der Bahn – eine Herausforderung für den Leichtbau. D-A-CH Tagung der Österreichischen Gesellschaft für Erdbebeningenieurwesen und Baudynamik. Vienna, 27−28 September 2007, pp. 1−11. [Electronic resource]: http://oge.or.at/pdf/d-a-ch_2007/05_Laermschutzwaende-an-Hochgeschwindigkeitsstrecken_eine-Herausforderung-fuer-den-Leichbau.pdf/. Last accessed 03.07.2022.
Review
For citations:
Labutin N.A. Development of a Numerical Model of the Aerodynamic Interaction of a High-Speed Train, Air Environment and Infrastructure Facilities. World of Transport and Transportation. 2022;20(4):6-16. https://doi.org/10.30932/1992-3252-2022-20-4-1