Modelling of Mechanisms as a Methodological Tool (the Case of Designing a Cycloidal Pin Transmission)
https://doi.org/10.30932/1992-3252-2021-19-4-5
Abstract
The suggested modern approach to modelling of objects and systems allows not only to create models but also to use them to study the main properties of the object (system) with a high degree of clarity and adequacy, as well as to develop most important skills of young engineers in creating and implementing digital models of engineering objects.
The objective of the study is to analyse capacity of one of the modern automated computational design systems as a methodological tool.
The functionality of an automated computational design system is considered for the case of constructing a model of a planetary cycloidal pinion transmission. The resulting model allows visualising the kinematics of the designed mechanism in the form of static or moving graphic images. The model built based on the described approach contains digital images of mechanism parts, which can be transferred without modification to specialised software systems for analysing strength characteristics or manufacturing material models of a product using rapid prototyping methods.
The proposed approach allows to perfect actions referring to the analysis of properties and synthesis of new structures using tools that correspond to the modern level of technology development and to get a visual idea of the process of developing a machine from a mathematical model to its material objectification.
The research methods are based on the fundamental principles of mathematical and simulation modelling, data analysis and processing using powerful automated computational design tools.
The tools used for modelling can be used for different forms of learning, i.e., without reference to specific premises and equipment.
About the Authors
M. V. StekolnikovRussian Federation
Ph.D. (Eng), Associate Professor,
Saratov
L. R. Milovanova
Russian Federation
Ph.D. (Eng), Associate Professor,
Moscow
I. A. Chelysheva
Russian Federation
Ph.D. (Eng), Associate Professor,
Saratov
References
1. Artobolevsky, I. I. Mechanisms in modern technology: Handbook [Mekhanizmy v sovremennoi tekhnike: Spravochnoe posobie]. In 7 volumes. Vol. IV: Gear mechanisms [Zubchatie mekhanizmy]. 2nd ed., rev. Moscow, Nauka. Main publishing house of physical and mathematical literature, 1980, 592 p. [Electronic resource]: https://vk.com/doc212739941_219722791?hash=71ebfd8e567d4457bc. Last accessed 21.04.2021.
2. Shcherbakov, N. R. Mathematical and computer modelling of the dynamic state of motion transmission systems. D.Sc. (Physics and Mathematics) thesis [Matematicheskoe i kompyuternoe modelirovanie dinamicheskogo sostoyaniya sistem peredachi dvizheniya. Dis… doc. f.-m. nauk]. Tomsk, TSU publ., 2009, 213 p. [Electronic resource]: https://www.elibrary.ru/item.asp?id=19225410. Last accessed 21.04.2021.
3. Dorosh, S. Step-by-step construction of an epicycloid for a cycloidal pin gear [Poshagovoe postroenie epitsikloidy dlya tsikloidaalnogo tsevochnogo reduktora]. [Electronic resource]: https://www.youtube.com/watch?v=JdYIv36D0Is. Last accessed 21.04.2021.
4. Bubenchikov, A. M., Shcherbakov, N. R., Stanovskoy, V. V., Kazakeyavichyus, S. M. Computer modelling of eccentric cycloidal pin gear [Kompyuternoe modelirovanie ekstsentrikovoi tsikloidalno-tsevochnoi peredachi]. Proceedings of International Conference «Differential Equations, Theory of Functions and Applications», 2007, pp. 562–563. [Electronic resource]: http://www.math.nsc.ru/conference/invconf/vekua07/abstracts/mat_mod/bubenchikov2.pdf. Last accessed 21.04.2021.
5. Vulgakov, E. B. Theory of involute gears [Teoriya evolventnykh zubchatykh peredach]. Moscow, Mashinostroenie publ., 1995, 320 p. ISBN 5-217-02355-4.
6. Efremenkov, E. A. Development of methods and means of increasing the efficiency of gears with intermediate rolling bodies. Ph.D. (Eng) thesis [Razrabotka metodov i sredstv povysheniya effektivnosti peredach s promezhutochnymi telami kacheniya. Dis... kand. tekh. nauk]. Tomsk, Tomsk Polytechnic University, 2002, 126 p. [Electronic resource]: https://www.elibrary.ru/item.asp?id=19182838. Last accessed 21.04.2021.
7. An I-Kan, Belyaev, A. E. Synthesis of planetary gears as applied to rotary hydraulic machines [Sintez planetarnykh peredach primenitalno k rotornym gidromashinam]. Novouralsk, NPI MIFI publ., 2001, 90 p. ISBN 5-332-0002-2.
8. Kireev, S. O. Planetary gears with eccentric internal pinned gearing in mechanical engineering [Planetarnie peredachi s vnetsentrovym vnutrennim tsevochnym zatsepleniem v mashinostroenii]. Vestnik DGTU, 2011, Vol. 11, Iss. 7 (58), pp. 1051−1058. [Electronic resource]: https://www.vestnik-donstu.ru/jour/article/download/824/819. Last accessed 21.04.2021.
9. Kireev, S. O. Theoretical foundations of methods of analysis and synthesis of planetary mechanisms with an offcentroid pinning. D.Sc. (Eng) thesis [Teoreticheskie osnovy metodov analiza i sinteza planetarnykh mekhanizmov s tsevochnym zatsepleniem. Dis... doc. tekh. nauk]. Novocherkassk, South-Russian State Technical University, 2002, 441 p. [Electronic resource]: http://www.dslib.net/organizacia-proizvodstva/teoreticheskie-osnovy-metodovanaliza-i-sinteza-planetarnyh-mehanizmov-s.html. Last accessed 21.04.2021.
10. Kobza, E. E., Efremenkov, E. A., Demidov, V. N. Analysis of distribution of efforts in the gearing of the cycloidal transmission considering the errors in manufacture of links [Analiz raspredeleniya usilii v zatseplenii tsikloidalnoi peredachi s uchetom pogreshnostei izgotovleniya zveniev]. Bulletin of Tomsk Polytechnic University, 2012, Vol. 321, Iss. 2, pp. 22−26. [Electronic resource]: http://earchive.tpu.ru/bitstream/11683/4357/1/bulletin_tpu-2012-321-2-05.pdf. Last accessed 21.04.2021.
11. Krainev, A. F. Mechanics of machines. Fundamental Dictionary [Mekhanika mashin. Fundamentalniy slovar]. Moscow, Mashinostroenie publ., 2001, 904 p. ISBN 5-217-0790-8.
12. Leontiev, N. V., Mugin, O. G., Mugin, O. O. Mechanical transmissions based on epicycloids and hypocycloids [Mekhanicheskie peredachi na osnove epitsikloidy i gipotsikloidy]. Bulletin of Nizhny Novgorod University n.a. N. I. Lobachevsky, 2011, Iss. 4 (5), pp. 2308–2310. [Electronic resource]: http://www.unn.ru/pages/e-library/vestnik/19931778_2011_-_4-5_unicode/141.pdf. Last accessed 21.04.2021.
13. Mugin, O. G., Mugin, O. O., Sinev, A. V. On remarkable properties of epicycloids and hypocycloids as applied to mechanical transmissions [O zamechatelnykh svoistvakh epitsikloidy i gopotsikloidy v primenenii k mekhanicheskim peredacham]. Bulletin of scientific and technical development, 2013, Iss. 1 (65), pp. 28−32. [Electronic resource]: http://www.vntr.ru/ftpgetfile.php?id=658. Last accessed 21.04.2021.
14. Sergeev, V. I. Methodological foundations of increasing the accuracy of mechanisms with higher kinematic pairs [Metodologicheskie osnovy povysheniya tochnosti mekhanizmov s vysshimi kinematicheskimi parami]. Problemy mashinostroeniya i nadezhnosti mashin, 2006, Iss. 1, pp. 3–9. [Electronic resource]: https://www.elibrary.ru/item.asp?id=9188440. Last accessed 21.04.2021.
15. Siritsin, A. I., Bashkirov, V. N., Shirokikh, E. V. Static torsional rigidity of the machine drive based on cycloidal pin gear [Staticheskaya krutilnaya zhestkost privoda stanka na osnove tsikloidalno-tsevochnoi peredachi]. Vestnik mashinostroeniya, 2015, Iss. 1, pp. 3−7. [Electronic resource]: https://www.elibrary.ru/item.asp?id=23727661. Last accessed 21.04.2021.
16. Fomin, M. V. Planetary pin gears [Planetarnotsevochnie peredachi]. Moscow, Bauman MSTU publ., 2009, 64 p. ISBN 978-5-7038-3309-4. [Electronic resource]: https://www.elibrary.ru/item.asp?id=29791168&. Last accessed 21.04.2021.
17. Suciu, F., Dǎscǎlescu, A., Ungureanu, M. From design to manufacturing of asymmetric teeth gears using computer application. IOP Conf. Series: Materials Science and Engineering, 2017, Vol. 200, pp. 012012. DOI: 10.1088/1757-899X/200/1/012012.
18. Fedosovskii, M. E., Aleksanin, S. A., Nikolaev, V. V., Yegorov, I. M., Dunaev, V. I., Puctozerov, R. V. The Effect of a Cycloid Reducer Geometry on its Loading Capacity. World Applied Sciences Journal, 2013, Vol. 24, No. 7, pp. 895–899. DOI: 10.5829/idosi.wasj.2013.24.07.13352. [Electronic resource]: https://www.idosi.org/wasj/wasj24(7)13/11.pdf. Last accessed 21.04.2021.
19. Sun, Y., Guan, T. The Modeling and Simulation Method to Calculate Force in the Equivalent Substitution Flank Profile Two Tooth Difference Cycloid Pin Gear Reducer Cycloid Gear. 2010 International Conference on Digital Manufacturing & Automation, 2010, pp. 729–733. DOI: 10.1109/ICDMA.2010.192.
20. Hidaka, T., Wang H., Ishida, T., Matsumota, K., Hashimota, M. Rotational transmission error of K-H-V planetary gears with cycloid gear. Transactions of the Japan Society of Mechanical Engineers Series C, 1994, Vol. 60, No. 570, pp. 645–653. DOI: https://doi.org/10.1299/kikaic.60.645.
21. Lai, Ta-Shi. Design and machining of the epicycloid planetary gear of cycloid drives. The International Journal of Advanced Manufacturing Technology, 2006, No. 28, pp. 665–670. DOI: 10.1007/s00170-004-2423-x.
22. Li, Chongning; Liu, Jiyan; Sun, Tao. Study on transmission precision of cycloidal pin gear in 2K-V planetary drives.Chinese Journal of Mechanical Engineering, 2001, Vol. 37, No. 4, pp. 61–65. [Electronic resource]: http://en.cnki.com.cn/Article_en/CJFDTOTAL-JXXB200104013.htm. Last accessed 21.04.2021.
23. Litvin, F., Fuentes, A. Gear Geometry and Applied Theory. 2nd ed. Cambridge University Press, 2004, 800 p. DOI: 10.1017/CBO9780511547126.
24. Shirokoshi, Norio; Hidaka, Teruaki; Kasei, Shinji. Studies of Influences of Geometrical Errors to Final Performances in Small Backlash Planetary Gears: Relations Among Position Deviations of Planet Gears, Target of Backlash and Non-Working Flank Load. Transactions of the Japan Society of Mechanical Engineers Series C, 2000, Vol. 66, No. 646, pp. 1950–1958. DOI: 10.1299/kikaic.66.1952.
25. Sun, Y. G., Zhao, X. F., Jiang, F., Zhao, L., Liu, D., Lu, G. B., Yu, G. Backlash analysis of RV reducer based on Error Factor Sensitivity and Monte-Carlo Simulation. International Journal of Hybrid Information Technology, 2014, Vol. 7, No. 2, pp. 283–292. DOI: 10.14257/ijhit.2014.7.2.25.
26. Terada, Hidetsugu. The Development of gearless reducers with rolling balls. Journal of Mechanical Science and Technology, 2010, No. 24, pp. 189–195. DOI: 10.1007/s12206-009-1155-0.
27. Yang, D. C. H., Blanche, J. G. Design and application guidelines for cycloid drives with machining tolerances. Mechanism and Machine Theory, 1990, Vol. 25, No. 5, pp. 487–501. DOI: 10.1016/0094-114X(90)90064-Q.
Review
For citations:
Stekolnikov M.V., Milovanova L.R., Chelysheva I.A. Modelling of Mechanisms as a Methodological Tool (the Case of Designing a Cycloidal Pin Transmission). World of Transport and Transportation. 2021;19(4):40-46. https://doi.org/10.30932/1992-3252-2021-19-4-5