Preview

World of Transport and Transportation

Advanced search

Monitoring System for Railway Automation Devices Based on the Industrial Internet of Things

https://doi.org/10.30932/1992-3252-2020-18-6-118-134

Abstract

The features of monitoring systems for railway infrastructure and rolling stock are considered. The main approaches to organisation of monitoring of railway infrastructure and rolling stock objects are described, their advantages and disadvantages are noted. The main objective of this work is to present to the reader a conceptual vision of a system for monitoring devices and systems for ensuring train traffic safety, using technologies for transmitting diagnostic information over a radio channel. The methods of the theory of technical diagnostics and monitoring were used. Attention is focused on the use of wireless data transmission technologies and the use of autonomous industrial automation sensors for monitoring systems for railway automation devices.

The architecture of the monitoring system is presented. The description of the system itself and the monitoring technology is given, the main advantages of the presented approach are noted, which, first, are linked to reduction of the volume of design work and of energy consumption of the system as a whole. The disadvantages are associated with the need to replace autonomous power supply sources, ensure security of the data transmission network, to proceed with periodic verification and calibration of measuring instruments. The basic diagrams of connecting sensors for measuring physical quantities to the circuit units of railway automation are presented. A list of parameters necessary for high-quality and effective monitoring of railway automation devices is given. The need is noted for both the control of mechanical and geometric parameters of devices and the accounting of data from interconnected objects of railway infrastructure and rolling stock. The proposed approach can find its application in the field of railway automation and, first of all, at those facilities that are located in premises with limited area (e.g. at subway facilities).

About the Author

D. V. Efanov
VEGA-group LLC; Russian University of Transport
Russian Federation

Efanov, Dmitry V. – D.Sc. (Eng), Associate Professor, First Deputy General Director – Chief Engineer; Professor at the Department of Railway Automation, Telemechanic and Communication

St. Petersburg

Moscow



References

1. Lakin, I. K., Pavlov, V. V., Melnikov, V. A. «Smart locomotive»: diagnostics of traction electric motors of diesel locomotives using machine learning methods [«Umniy lokomotiv»: diagnostirovanie tyagovykh elektrodvigatelei teplovozov s ispolzovaniem metodov mashinnogo obucheniya]. Transport Rossiiskoi Federatsii, 2018, Iss. 1, pp. 53–56. [Electronic resource]: http://rostransport.com/transportrf/download.php?src=/transportrf/pdf/74/1994-831X-2018-1-53-56.pdf. Last accessed 12.06.2020.

2. Efanov, D. V., Barch, D. V., Osadchiy, G. V. Stationary monitoring systems and digital railway contact suspension [Sistemy statsionernogo monitoringa i tsifrovaya zheleznodorozhnaya kontaktnaya podveska].Transport Rossiiskoi Federatsii, 2019, Iss. 4, pp. 41–44. [Electronic resource]: https://cyberleninka.ru/article/n/sistemystatsionarnogo-monitoringa-i-tsifrovaya-zheleznodorozhnaya-kontaktnaya-podveska/pdf. Last accessed 12.06.2020.

3. Ivanov, A. A., Legonkov, A. K., Molodtsov, V. P. Data transmission from moving equipment devices by APK-DK equipment in the absence of a physical line and round-theclock duty [Peredacha dannykh s ustroistv oborudovaniya pereezda apparaturoi APK-DK pri otsutstvii fizicheskoi linii i kruglosutochnogo dezhurstva]. Avtomatika na transporte, 2016, Vol. 2, Iss. 1, pp. 65–80. [Electronic resource]: http://atjournal.ru/ru/Home/Download? path=articles%2F2016_Vol.%202_No.%201_5_molodtsov.pdf. Last accessed 12.06.2020.

4. Nesterov, V. V. Development of STDM, ASU-Sh-2 and AOS-ShCh systems [Razvitie sistem STDM, ASU-Sh-2 i AOS-ShCh]. Avtomatika, svyaz, informatika, 2012, Iss. 12, pp. 45–46. [Electronic resource]: https://www.elibrary.ru/item.asp?id=18259709. Last accessed 12.06.2020.

5. Theeg, G., Vlasenko, S. Railway Signalling & Interlocking: 3nd ed. Germany, Leverkusen PMC Media House GmbH, 2020, 552 p. [Electronic resource]: https://www.elibrary.ru/item.asp?id=42536131. Last accessed 12.06.2020.

6. Molodtsov, V. P., Ivanov, A. A. Systems of dispatch control and monitoring of devices of railway automation and telemechanics [Sistemy dispetcherskogo kontrolya i monitoringa ustroistv zheleznodorozhnoi avtomatiki i telemekhaniki]. St. Petersburg, PSTU publ., 2010, 140 p.

7. Fedorchuk, A. E., Sepetyy, A. A., Ivanchenko, V. N. Automation of technical diagnostics and monitoring of ZhAT devices (ADK-STSB system) [Avtomatizatsiya tekhnicheskogo diagnostirovaniya i monitoringa ustroistv ZhAT (Sistema ADKSCB)]. Moscow, TMC RT publ., 2013, 400 p. [Electronic resource]: https://b-ok.global/dl/2900845/33264c. Last accessed 12.06.2020.

8. Domingues, J. L. M. Diagnostic Levels in Railway Applications. Signal+Draht, 2004, Iss. 1/2, pp. 31–34.

9. Asada, T. Novel Condition Monitoring Techniques Applied to Improve the Dependability of Railway Point Machines. University of Birmingham, UK, Ph.D. thesis, May 2013, 149 p. [Electronic resource]: http://etheses.bham.ac.uk/4155/1/Asada13PhD.pdf. Last accessed 12.06.2020.

10. Jin, W., Shi Z., Siegel, D., Dersin, P., Douziech, C., Pugnaloni, M., La Cascia, P., Lee, J. Development and Evaluation of Health Monitoring Techniques for Railway Point Machines. 2015 IEEE Conference on Prognostics and Health Management (PHM), 22–25 June 2015, Austin, TX, USA, DOI: 10.1109/ICPHM.2015.7245016.

11. Böhm, T. Remaining Useful Life Prediction for Railway Switch Engines Using Artificial Neural Networks and Support Vector Machines. International Journal of Prognostics and Health Management 8 (Special Issue on Railways & Mass Transportation), December 2017, 15 p. [Electronic resource]: https://www.researchgate.net/profile/Thomas_Boehm5/publication/322603073_Remaining_Useful_Life_Prediction_for_Railway_Switch_Engines_Using_Artificial_Neural_Networks_and_Support_Vector_Machines/links/5a62479a4585158bca4c39d4/Remaining-Useful-Life-Prediction-for-Railway-Switch-Engines-Using-Artificial-Neural-Networks-and-Support-Vector-Machines.pdf. Last accessed 12.06.2020.

12. Heidmann, L. Smart Point Machines: Paving the Way for Predictive Maintenance. Signal+Draht, 2018 (110), Iss. 9, pp. 70–75. [Electronic resource]: https://eurailpressarchiv.de/SingleView.aspx?show=325895. Last accessed 12.06.2020.

13. Wernet, M., Brunokowski, M., Witt, P., Meiwald, T. Digital Tools for Relay Interlocking Diagnostics and Condition Assessment. Signal+Draht, 2019 (111), Iss. 11, рp. 39–45. [Electronic resource]: https://eurailpress-archiv.de/SingleView.aspx?show=1136153&lng=en. Last accessed 12.06.2020.

14. Hahanov, V. Cyber Physical Computing for IoTdriven Services. New York, Springer International Publishing AG, 2018, 279 p. DOI: 10.1007/978-3-319-54825-8.

15. Autonomous wireless measuring devices [Avtonomnie besprovodnie izmeritelnie ustroistva]. Schneider Electric, MKP-BRC-ACCUTECh-13, 2013, Iss. 6, 12 p. [Electronic resource]: https://download.schneider-electric.com/files?p_enDocType=Brochure&p_File_Id=5916220128&p_File_Name=Accutech_brochure_2016.pdf&p_Reference=MKP-BRCACCUTECH-13. Last accessed 12.06.2020.

16. Fritz, C. Intelligent Point Machines. Signal+Draht, 2018 (110), Iss. 12, рp. 12–16. [Electronic resource]: https://eurailpress-archiv.de/SingleView.aspx?show=469469&lng=en. Last accessed 12.06.2020.

17. Kassa, E., Skavhaug, A., Kaynia, A. M. Monitoring of Switches & Crossing (Tornouts) and Tracks. Decision Support Tool for Rail Infrastructure, EU Project No. 636285, 41 p. [Electronic resource]: http://www.destinationrail.eu/ajax/DownloadHandler.php?file=2123. Last accessed 12.06.2020.

18. Efanov, D. V. Functional control and monitoring of devices of railway automation and telemechanics [Funktsionalniy kontrol i monitoring ustroistv zheleznodorozhnoi avtomatiki i telemekhaniki]. St. Petersburg, PSTU publ., 2016, 171 p. [Electronic resource]: https://www.studmed.ru/efanovd-v-funkcionalnyy-kontrol-i-monitoring-ustroystvzheleznodorozhnoy-avtomatiki-i-telemehaniki_615d76c768b.html. Last accesed 12.06.2020.

19. Efanov, D., Pristensky, D., Osadchy, G., Razvitnov, I., Sedykh, D., Skurlov, P. New Technology in Sphere of Diagnostic Information Transfer within Monitoring System of Transportation and Industry. Proceedings of 15th IEEE East-West Design & Test Symposium (EWDTS`2017), Novi Sad, Serbia, September 29–October 2, 2017, pp. 231–236. DOI: 10.1109/EWDTS.2017.8110152.

20. Efanov, D. V. Integration of continuous monitoring and traffic control systems on railway transport [Integratsiya system nepreryvnogo monitoringa i upravleniya dvizheniem na zheleznodorozhnom transporte]. Transport Rossiiskoi Federatsii, 2017, Iss. 4, pp. 62–65. [Electronic resource]: https://cyberleninka.ru/article/n/integratsiya-sistemnepreryvnogo-monitoringa-i-upravleniya-dvizheniem-nazheleznodorozhnom-transporte/pdf. Last accessed 12.06.2020.

21. Efanov, D. V., Osadchiy, G. V. The concept of control systems based on information technologies [Kontseptsiya system upravleniya na osnove informatsinnykh tekhnologii]. Avtomatika, svyaz, informatika, 2018, Iss. 5, pp. 20–23. [Electronic resource]: https://www.elibrary.ru/item.asp?id=34917661. Last accessed 12.06.2020.


Review

For citations:


Efanov D.V. Monitoring System for Railway Automation Devices Based on the Industrial Internet of Things. World of Transport and Transportation. 2020;18(6):118-134. https://doi.org/10.30932/1992-3252-2020-18-6-118-134

Views: 624


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1992-3252 (Print)