Evaluation of Electrophysical Properties of Soils in the Slope Zones of the Foundation During GPR Survey
https://doi.org/10.30932/1992-3252-2020-18-6-88-107
Abstract
The article describes a new method for conducting a ground penetrating radar survey of slope zones of soil objects of transport infrastructure. In the lithological section of these objects, there are sub-horizontal and inclined soil boundaries, as well as slope zones. Traditional survey methods (drilling, pitting), as well as the standard GPR method, make it possible to reliably survey at these objects, as a rule, only the zones under the horizontal main ground of the subgrade and sub-horizontal sections of the ground outside its boundaries. Survey under inclined surfaces is often difficult or technically impossible; geophysical methods, just like traditional ones, provide initial information that is exceedingly difficult for further decoding. The sections are filled with re-reflections and noises, and the process of decoding them is associated with great methodological problems.
This paper presents a new method for determining speed of propagation of radio waves in the slope zones of the foundation. The initial information is the data obtained during the survey using the common depth point (CDP) method, using a well-known survey technique and a standard set of hardware. The novelty of the article results is determined by the algorithm for processing the measurement results developed by the authors. The software implementation made on its basis makes it possible to obtain the hodograph equation considering the slope of the layers. Defining geometric characteristics of embankments associated with the presence of slopes of variable steepness have been considered. A technique for calculating propagation speed of radio waves for a two-layer medium with a boundary inclined to the scanning surface has been proposed. The validity of the developed method was verified using finite-difference time-domain modelling.
The article provides examples of practical application of the developed method in the GPR survey of real track foundation objects (transport infrastructure objects). The method proposed in the article makes it possible to increase the informative area of the surveyed diameters. At the same time, the accuracy of the GPR method is preserved, the area of its application for obtaining reliable information is increased to 60 % of the cross-sectional area of the foundation.
Keywords
About the Authors
V. V. PupatenkoRussian Federation
Pupatenko, Victor V. – Ph.D. (Eng), Associate Professor at the Department of Railway Track
Khabarovsk
Yu. A. Sukhobok
Russian Federation
Sukhobok, Yuri A. – Ph.D. (Eng), Associate Professor at the Department of Railway Track
Khabarovsk
G. M. Stoyanovich
Russian Federation
Stoyanovich, Gennady M. – D.Sc. (Eng), Professor at the Department of Railway Track
Khabarovsk
References
1. Vladov, M. R., Starovoitov, A. V. Introduction to geo-radiolocation [Vvedenie v georadiolokatsiyu]. Moscow, Publishing house of Moscow State University, 2004, 153 p. [Electronic resource]: https://www.geokniga.org/bookfiles/geokniga-vladov-ml-starovojtov-av-vvedenie-vgeoradiolokaciyu-mmgu‑2004rutk155sgsp.pdf. Last accessed 26.10.2020.
2. Pupatenko, V. V., Suhobok, Yu. A. Lithological Profiling with Ground-Penetrating Radar. World of Transport and Transportation, 2013, Vol. 11, Iss. 3, pp. 154–161. [Electronic resource]: https://mirtr.elpub.ru/jour/article/view/395. Last accessed 26.10.2020.
3. Pupatenko, V. V., Sukhobok, Y. A., Stoyanovich, G. M. Lithological Profiling of Rocky Slopes using GeoReader Software Based on the Results of Ground Penetrating Radar Method. Procedia Engineering. Transportation Geotechnics and Geoecology, TGG 2017, Saint Petersburg, Russia, 2017, Vol. 189, рр. 643–649. [Electronic resource]: https://www.researchgate.net/publication/317192027_Lithological_Profiling_of_Rocky_Slopes_using_GeoReader_Software_Based_on_the_Results_of_Ground_Penetrating_Radar_Method/fulltext/592c1845a6fdcc44435e788d/Lithological-Profiling-of-Rocky-Slopes-using-GeoReader-Software-Based-on-the-Results-of-Ground-Penetrating-Radar-Method.pdf. Last accessed 26.10.2020. DOI: 10.1016/j.proeng.2017.05.102.
4. Pupatenko, V. V., Sukhobok, Y. A., Stoyanovich, G. M., Stetsyuk, A. E., Verkhovtsev, L. R. GPR data interpretation in the landslides and subgrade slope surveys. Selected issues, MATEC Web of Conferences, 2019, Vol. 265, 03003. [Electronic resource]: https://www.matec-conferences.org/articles/matecconf/pdf/2019/14/matecconf_gccets2018_03003.pdf. Last accessed 26.10.2020. DOI: https://doi.org/10.1051/matecconf/201926503003.
5. Stoyanovich, G. M., Pupatenko, V. V., Sukhobok, Yu. A. Search for buried ice by GPR during reconstruction of railways [Poisk pogrebennykh ldov metodom georadiolokatsii pri rekonstruktsii zheleznykh dorog]. Second International Symposium of roadbed in cold regions: Proceedings of the Symposium (Novosibirsk, September 24–26, 2015). Ed. by prof. A. L. Isakov and prof. Ts.K. Liu. Novosibirsk, SGUPS publ., 2015, pp. 78–83. [Electronic resource]: https://drive.google.com/file/d/1sCvggXDsUwAjwKmKVPCcIhqEEK9kK98Q/view.Last accessed 26.10.2020.
6. Ground Penetrating Radar. Ed. by David J. Daniels. London, The Institution of Electrical Engineers, 2004, 734 p. DOI: 10.1049/PBRA015E.
7. Questions of subsurface radar location: Collective monograph [Voprosy podpoverkhnostnoi radiolokatsii]. Ed. by A. Yu. Grinev. Moscow, Radiotekhnika publ., 2005, 416 p. [Electronic resource]: https://www.geokniga.org/bookfiles/geokniga-grinev-ayu-red-voprosy-podpoverxnostnoj-radiolokacii-mradiotexnika‑2005ruk3.pdf. Last accessed 26.10.2020.
8. Popov, S. V. Determination of dielectric constant from traveltime curves of diffracted waves in the framework of a model of an inclined-layered medium [Opredelenie dielektricheskoi pronitsaemosti po godografam difragirovannykh voln v ramkakh modeli naklonno-sloistoi sredy]. Cryosphere of the Earth, 2017, Vol. 21, Iss. 3, pp. 83–87. [Electronic resource]: https://docplayer.ru/85796845-Opredelenie-dielektricheskoy-pronicaemostipo-godografam-difragirovannyh-voln-v-ramkah-modelinaklonno-loistoy-sredy.html. Last accessed 26.10.2020.
9. Ground Penetrating Radar: Theory and Applications. Ed. by H. M. Jol. Amsterdam, Elsevier Science, 2009, 508 p. [Electronic resource]: http://bookfi.net/book/698213. Last accessed 26.10.2020.
10. Starovoitov, A. V. Interpretation of ground-penetrating radar data: study guide [Interpretatsiya georadiolokatsionnykh dannykh: Uchebnoe posobie]. Moscow, Publishing house of Moscow State University, 2008, 192 p. [Electronic resource]: https://www.geokniga.org/bookfiles/geokniga-interpretaciya-georadiolokacionnyh-dannyh.pdf. Last accessed 26.10.2020.
11. Bricheva, S. S. Development of methods for studying cryogenic objects using GPR. Ph.D. (Geological and mineral sciences) thesis [Razrabotka metodiki izucheniya kriogennykh ob’ektov pri pomoshchi georadiolokatsii. Dis… na soiskanie uchenoi stepeni kand. geologo-mineral. nauk]. Moscow, Publishing house of Moscow State University, 2018, 169 p. [Electronic resource]: https://istina.msu.ru/download/102445811/1f4myB:4rMolfBksN6A7nUkgfjcfLhA50g/. Last accessed 26.10.2020.
12. Forte, E., Pipan, M. Review of multi-offset GPR applications: Data acquisition, processing and analysis. Signal Processing, 2017, Vol. 132, рр. 210–220. [Electronic resource]: https://www.sciencedirect.com/science/article/pii/S0165168416300494?via%3Dihub. Last accessed 26.10.2020. DOI: https://doi.org/10.1016/j.sigpro.2016.04.011.
13. Dix, C. Seismic velocities from surface measurements. Geophysics, 1955, Vol. 20, No. 1, рр. 68–86. [Electronic resource]: https://ru.scribd.com/document/260551160/Seismic-Velocities-From-Surface-Measurements-C-Hewitt-Dix. Last accessed 26.10.2020.
14. Seismic Survey: Geophysics Handbook [Seismorazvedka: Spravochnik geofizika]. Ed. by I. I. Gurvich, V. P. Nomokonov. Moscow, Nedra publ., 1981, 464 p. [Electronic resource]: https://www.geokniga.org/bookfiles/geokniga-seismorazvedkaspravochnikgeofizikapod-red-gurvicha-nomokonova-mnedra.djv. Last accessed 26.10.2020.
15. Forte, E., Dossi, M., Pipan, M., Colucci, R. R. Velocity analysis from common offset GPR data inversion: theory and application to synthetic and real data. Geophysical Journal International, 2014, Iss. 297, рр. 1471–1483. [Electronic resource]: https://www.researchgate.net/profile/Renato_Colucci2/publication/262980200_Velocity_analysis_from_common_offset_GPR_data_inversion_Theory_and_application_to_synthetic_and_real_data/links/559be0c408ae0035df2336dc/Velocity-analysis-fromcommon-offset-GPR-data-inversion-Theory-andapplication-to-synthetic-and-real-data.pdf. Last accessed 26.10.2020. DOI: 10.1093/gji/ggu103.
16. Saarenketo, T., Scullion, T. Road evaluation with ground penetrating radar. Journal of Applied Geophysics, 2000, Vol. 43, Iss. 2–4, рр. 119–138. [Electronic resource]: https://www.sciencedirect.com/science/article/pii/S092698519900052X?via%3Dihub. Last accessed 26.10.2020. DOI: https://doi.org/10.1016/S0926-9851(99)00052-X.
17. Sukhobok, Yu. A., Kurbatov, M. S. GeoReader software for information modeling of georadar data [Programmniy kompleks dlya informatsionnogo modelirovaniya georadarnykh dannykh GeoReader]. CAD and GIS of highways, 2019, Iss. 2 (13), pp. 26–31. [Electronic resource]: http://www.cadgis.ru/2019/13/CADGIS‑2019–2(13)-04.Sukhobok-Kurbatov(GeoReader).pdf. Last accessed 26.10.2020. DOI: 10.17273/CADGIS.2019.2.4.
18. Yilmaz, O. Seismic Data Analysis: Processing, Inversion, and Interpretation of Seismic Data. Society of Exploration Geophysicists, Tulsa, OK, 2001, Vol. 1, 1028 p. DOI: https://doi.org/10.1190/1.9781560801580
19. Warren, C., Giannopoulos, A., Giannakis, I. gprMax: Open source software to simulate electromagnetic wave propagation for ground penetrating radar. Computer Physics Communications, 2016, Vol. 209, pp. 163–170. [Electronic resource]: https://www.researchgate.net/profile/Antonios_Giannopoulos2/publication/308044720_gprMax_Open_source_software_to_simulate_electromagnetic_wave_propagation_for_Ground_Penetrating_Radar/links/57eb070208ae5d93a4815e1b/gprMax-Open-source-software-tosimulate-electromagnetic-wave-propagation-for-Ground-Penetrating-Radar.pdf. Last accessed 26.10.2020. DOI: 10.1016/j.cpc.2016.08.020.
Review
For citations:
Pupatenko V.V., Sukhobok Yu.A., Stoyanovich G.M. Evaluation of Electrophysical Properties of Soils in the Slope Zones of the Foundation During GPR Survey. World of Transport and Transportation. 2020;18(6):88-107. https://doi.org/10.30932/1992-3252-2020-18-6-88-107