Operational Rationing of Energy Resources for Train Traction using the Method of Artificial Neural Networks
https://doi.org/10.30932/1992-3252-2020-18-158-169
Abstract
About the Authors
S. V. MalakhovRussian Federation
Malakhov, Sergey V. – Assistant Lecturer at the Department of Traction Rolling Stock of Russian Open Academy of Transport
Moscow
M. Yu. Kapustin
Russian Federation
Kapustin, Mikhail Yu. – Ph.D. (Eng), Associate Professor at the Department of Traction Rolling Stock of Russian Open Academy of Transport, member of the Scientific and Technical Council of JSC Russian Railways
Moscow
References
1. The energy strategy of the Holding Company Russian Railways for the period until 2025 and for the long term until 2030 [Energeticheskaya strategiya kholdinga «Rossiiskie zheleznie dorogi» na period do 2025 goda i na perspektivu do 2030 goda]. [Electronic resource]: http://www.rzd-expo. ru/innovation/resource_saving/energeticheskay_efektivnost/enstrat2030.pdf. Last accessed 19.12.2019.
2. Huang, Jin; Deng, Yangdong; Yang, Qinwen; Sun, Jia-Guang. An Energy-Efficient Train Control Framework for Smart Railway Transportation. IEEE Transactions on Computers, 2015, Vol. 65, Iss. 5, pp. 1407–1417. DOI: 10.1109/TC.2015.2500565.
3. Cismaru, D. C., Drighiciu, M. A., Nicola, D. A. SIMULINK model for study of energy efficient train control. International Conference on Applied and Theoretical Electricity, ICATE2014 – Proceedings, 2014. DOI: 10.1109/ICATE.2014.6972685.
4. Miyatake, Masafumi; Ko, Hideyoshi. Optimization of Train Speed Profile for Minimum Energy Consumption. Special Issue on Energy Saving Technologies on Electric Railways in Japan, 20 April, 2010, Vol. 5, Iss. 3, pp. 263–269. DOI: https://doi.org/10.1002/tee.20528.
5. Lu, Shaofeng; Hillmansen, Stuart; Ho, Tin; Roberts, C. Single-Train Trajectory Optimization. Intelligent Transportation Systems, IEEE Transactions, Junе 2013, Vol. 14, pp. 743–750. DOI: 10.1109/TITS.2012.2234118.
6. Su, Shuai; Tang, Tao; Roberts, C. A Cooperative Train Control Model for Energy Saving. Intelligent Transportation Systems, IEEE Transactions, April 2015, Vol. 16, Iss. 2, pp. 622–631, DOI: 10.1109/TITS.2014.2334061.
7. Yang, Li; Lidén, T.; Leander, P. Achieving energyefficiency and on-time performance with Driver Advisory Systems. 2013 IEEE International Conference on Intelligent Rail Transportation Proceedings, August 2013, pp. 13–18. DOI: 10.1109/ICIRT.2013.6696260.
8. Istomin, S. G. Identification of unproductive losses of electricity by electric rolling stock using on-board information-measuring complexes of electricity metering [Opredelenie neproizvoditelnykh poter’ elektroenergii elektropodvizhnym sostavom s ispolzovaniem bortovykh informatsionno-izmeritelnykh kompleksov ucheta elektroenergii]. Bulletin of the Rostov State Transport University, Rostov-on-Don, 2015, Iss. 2 (58), pp. 19–24.
9. Muginshtein, L. A. The modern methodology of technical regulation of consumption of fuel and energy resources by locomotives for traction of trains [Sovremennaya metodologiya tekhnicheskgo normirovaniya raskhoda toplivnoenergeticheskikh resursov lokomotivami na tyagu poezdov]. Moscow, VMG-Print, 2014, 144 p.
10. Cheremisin, V. T., Ushakov, S. Yu., Istomin, S. G. Control of irrational use of electric energy for traction of trains with the use of on-board information-measuring complexes of electricity metering [Kontrol’ neratsionalnogo ispolzovaniya elektricheskoi energii na tyagu poezdov s primeneniem bortovykh informtsionno-izmeritelnykh kompleksov ucheta elektroenergii]. Bulletin of the TransSiberian Railway, 2015, No. 1 (21), pp. 69–74.
11. Yurenko, K. I. The maximum principle of L. S. Pontryagin in the problem of optimal control of train movement [Printsip maksimuma L. S. Pontryagina v zadache optimalnogo upravleniya dvizheniem poezda]. Vestnik VELNII, 2018, Iss. 1–2 (79), pp. 147–161.
12. Yurenko, K. I. Calculation of energy-optimal driving modes of promising rolling stock by the method of dynamic programming [Raschet energooptimalnykh rezhimov dvizheniya perspektivnogo podvizhnogo sostava metodom dinamicheskogo programmirovamiya]. News of universities. Electromechanics, 2013, Iss. 3, pp. 78–82.
13. Yurenko, K. I., Fandeev, E. I. The principles of construction and simulation of systems of auto-driving of electric rolling stock [Printsipy postroeniya i imitatsionnoe modelirovanie system avtovedeniya elektropodvizhnogo sostava]. Bulletin of Southern Federal University. Technical science, 2016, Iss. 8, pp. 88–102.
14. The rules of traction calculations for train work. Normative production and practical publication. [Pravila tyagovykh raschyotov dlia poezdnoi raboty]. Moscow, JSC Russian Railways, 2016, 515 p. Approved by the order of JSC Russian Railways No. 867r. Dated 12.05.2016.
15. Kapustin, M. Yu., Malakhov, S. V. On the issue of unification and standardization of locomotive microprocessor systems [K voprosu ob unifikatsii istandartizastii lokomotivnykh mikroprotsessornykh system]. Locomotives. Electric transport. 21st century, Vol. 2: Proceedings of 6th International scientific and technical conference, St. Petersburg, November 13–15, 2018, St. Petersburg, PGUPS publ., pp. 67–74
Review
For citations:
Malakhov S.V., Kapustin M.Yu. Operational Rationing of Energy Resources for Train Traction using the Method of Artificial Neural Networks. World of Transport and Transportation. 2020;18(1):158-169. https://doi.org/10.30932/1992-3252-2020-18-158-169