Preview

World of Transport and Transportation

Advanced search

Inertial Capacitive Energy Storage Device for a Shunting Diesel Locomotive

https://doi.org/10.30932/1992-3252-2019-17-3-82-87

Abstract

The relatively frequent change in the operating mode of a shunting diesel locomotive determines efficiency and feasibility of equipping it with an energy storage device. In addition to smoothing the load on the power plant, the energy storage device will allow to regenerate energy during braking, thereby increasing energy efficiency of a shunting diesel locomotive. This topic is frequently discussed in World of Transport and Transportation Journal, that is the evidence of its timeliness. 
The theoretical background for developing an inertial capacitive energy storage device, which is technically designed as a DC machine with a super flywheel that makes it possible to smooth the load on the power plant, thereby reducing its power and mass and dimensions, is presented. The increase in mass thanks to the energy storage device can be compensated by a decrease in the mass of the engine. As the diesel locomotive is equipped with electromechanical transmission, then it minimizes the framework of development for it of a considered inertial capacitive drive, making it even more advantageous. The article provides initial calculations and circuits.

About the Author

I. P. Popov
Kurgan State University
Russian Federation

senior lecturer at the department of Mechanical engineering, metal-cutting machines and tools

Kurgan



References

1. Kalugin, S. P. Economic Choice of Parameters of Hybrid Locomotives’ Power Plant. World of Transport and Transportation, Vol. 13, 2015, Iss. 4, pp. 126–136.

2. Nezevak, V. L., Shatokhin, A. P. Features of the Traction Load for Determining the Parameters of the Electric Energy Storage Device. World of Transport and Transportation, Vol. 16, 2018, Iss. 2, pp. 84–94.

3. Milovanova, E. A., Milovanov, A. A., Milovanov, A. I. Redundant Locomotive Traction Drive. World of Transport and Transportation, Vol. 13, 2015, Iss. 5, pp. 86–98.

4. Drozdov, B. V., Terentiev, Yu. A. Prospects for Vacuum Magnetic-Levitation Transport. World of Transport and Transportation, Vol. 15, 2017, Iss. 1, pp. 90–99.

5. Popov, I. P. The rotor-jet propulsion [Rotorno-reaktivniy dvizhitel]. Oboronniy kompleks – nauchno-tekhnicheskomu progressu Rossii, 2018, Iss. 4, pp. 24–26.

6. Cheremisin, V. T., Nikiforov, M. M., Wilhelm, A. S. Method for Estimating the Use of Regenerative Energy. World of Transport and Transportation, Vol. 16, 2018, Iss. 1, pp. 34–45.

7. Popov, I. P. Mechanical analogues of reactive power [Mekhanicheskie analogi reaktivnoi moshcnosti]. Vestnik Permskogo universiteta. Matematika. Mekhanika. Informatika, 2015, Iss. 3(30), pp. 37–39.

8. Veselov, P. A. Regenerative Braking Energy: to Store or to Eexchange? World of Transport and Transportation, Vol. 15, 2017, Iss. 5, pp. 76–84.

9. Popov, I. P. Combined vectors and magnetic charge [Kombinirovannie vektory i magnitniy zaryad]. Prikladnaya fizika i matematika, 2018, Iss. 6, pp. 12–20.

10. Kalugin, S. P., Belyaev, A. S. Traction Electric Motors for Hybrid and Electro-Chemical Locomotives. World of Transport and Transportation, Vol. 13, 2015, Iss. 6, pp. 50–61.

11. Popov, I. P. Capacity inertial device [Emkostnoinertnoe ustroistvo]. Izvestiya Sankt-Peterburskogo gosudarstvennogo elektrotekhnicheskogo universiteta LETI, 2015, Vol. 2, pp. 43–45.

12. Kalugin, S. P. Economic Choice of Parameters of Hybrid Locomotives’ Power Plant. World of Transport and Transportation, Vol. 13, 2015, Iss. 4, pp. 126–136.

13. Gavrilenko, N. G. Features of Cyclical Development of Automotive Industry. World of Transport and Transportation, Vol. 15, 2017, Iss. 3, pp. 6–15.

14. Drozdov, B. V., Terentiev, Yu. A. Prospects for Vacuum Magnetic-Levitation Transport. World of Transport and Transportation, Vol. 15, 2017, Iss. 1, pp. 90–99.

15. Ogorodnov, S. M., Maleev, S. I. Experiment and Theory: Distribution of Characteristics of Car Motion. World of Transport and Transportation, Vol. 15, 2017, Iss. 4, pp. 20–33.

16. Popov, I. P. The rotor-jet propulsion [Rotorno-reaktivniy dvizhitel]. Oboronniy kompleks – nauchno-tekhnicheskomu progressu Rossii, 2018, Iss. 4, pp. 24–26.

17. Demidov, D. V., Kuchkarov, V. V. On the Interruption in Torque Delivery of Passenger Cars. World of Transport and Transportation, Vol. 15, 2017, Iss. 6, pp. 80–87.

18. Popov, I. P. Mechanical analogues of reactive power [Mekhanicheskie analogi reaktivnoi moshcnosti]. Vestnik Permskogo universiteta. Matematika. Mekhanika. Informatika, 2015, Iss. 3(30), pp. 37–39.

19. Popov, I. P. Combined vectors and magnetic charge [Kombinirovannie vektory i magnitniy zaryad]. Prikladnaya fizika i matematika, 2018, Iss. 6, pp. 12–20.

20. Popov, I. P. Capacity inertial device [Emkostnoinertnoe ustroistvo]. Izvestiya Sankt-Peterburskogo gosudarstvennogo elektrotekhnicheskogo universiteta LETI, 2015, Vol. 2, pp. 43–45.

21. Gavrilenko, N. G. Features of Cyclical Development of Automotive Industry. World of Transport and Transportation, Vol. 15, 2017, Iss. 3, pp. 6–15.

22. Ogorodnov, S. M., Maleev, S. I. Experiment and Theory: Distribution of Characteristics of Car Motion. World of Transport and Transportation, Vol. 15, 2017, Iss. 4, pp. 20–33.

23. Demidov, D. V., Kuchkarov, V. V. On the Interruption in Torque Delivery of Passenger Cars. World of Transport and Transportation, Vol. 15, 2017, Iss. 6, pp. 80–87.


Review

For citations:


Popov I.P. Inertial Capacitive Energy Storage Device for a Shunting Diesel Locomotive. World of Transport and Transportation. 2019;17(3):82-87. https://doi.org/10.30932/1992-3252-2019-17-3-82-87

Views: 550


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1992-3252 (Print)