Preview

World of Transport and Transportation

Advanced search

Transverse Oscillation of a Base Slab Section of Ballastless Track

https://doi.org/10.30932/1992-3252-2019-17-2-72-78

Abstract

The study is devoted to construction of a mathematical model of a slab of a ballastless base of a railway track, assembled from separate segments fastened together. Each rectangular segment is modeled by a transversely isotropic prestressed plate. An equation has been obtained that allows researchers to study the natural oscillation frequencies of a rectangular plate, which is especially important from the point of view of choosing a final design of a ballastless track for high-speed main lines. An important issue solved is damping of supporting structures and separation of frequencies of natural and forced oscillations over different intervals of the frequency spectrum. To solve the set tasks, the decomposition method was used, its efectiveness and relative simplicity were proved.

About the Authors

B. D. Dzhanmuldaev
Korkyt Ata Kyzylorda State University
Kazakhstan

Dzhanmuldaev, Bahitzhan D. – D.Sc. (Eng), professor 

Kyzylorda



A. A. Loktev
Russian University of Transport
Russian Federation

Loktev, Alexey A. – D.Sc. (Physics and Mathematics), professor, head of the department of Transport construction

Moscow



K. T. Alenov
Korkyt Ata Kyzylorda State University
Kazakhstan

Alenov, Kanat T. – senior lecturer

Kyzylorda



Z. T. Fazilova
Russian University of Transport
Russian Federation

Fazilova, Zulfiya T. – Ph.D. (Eng), associate professor 

Moscow



References

1. Loktev, A. A., Sychev, V. P., Loktev, D. A., Dmitriev, V. G. Automated system for detecting rolling stock wheel defects based on assessment of the nonaxisymmetric impact of a wheel on a rail when modeling track superstructure using an orthotropic plate [Avtomatizirovannaya sistema vyyavleniya defektov koles podvizhnogo sostava na osnove otsenki udarnogo neosesimmetrichnogo vozdeistviya kolesa na rels pri modelirovanii verkhnego storeniya puti ortotropnoi plastinoi]. Problemy mashinostroeniya i avtomatizatsii, 2017, Iss. 4, pp. 59–70.

2. Vinogradov, V. V., Loktev, A. A., Fazilova, Z. T. Mathematical modeling of sections of variable rigidity in front of artificial structures. World of Transport and Transportation, Vol. 16, 2018, Iss. 3, pp. 72–85.

3. Loktev, A., Sychev, V., Gluzberg, B., Gridasova, E. Modeling the dynamic behavior of railway track taking into account the occurrence of defects in the system wheel-rail. In: MATEC Web of Conferences 26. Ser. «RSP 2017–26th R-S-P Seminar 2017 Theoretical Foundation of Civil Engineering» 2017, No. 00108.

4. Pshenichnov, G. I. The decomposition method for solving equations and boundary value problems [Metod dekompozitsii resheniya uravnenii i kraevykh zadach]. Doklady Akademii nauk SSSR, 1985, Vol. 282, Iss. 4, pp. 792–794.

5. Pshenichnov, G. I. The solution of some problems of structural mechanics by the decomposition method [Reshenie nekotorykh zadach stroitelnoi mekhaniki metodom dekompozitsii]. Stroitelnaya mekhanika i raschet sooruzhenii, 1986, Iss. 4, pp. 12–17.

6. Dzhanmuldaev, B. D., Alenov, K. T. Constructing a linear theory of the dynamic conduct of building structures in the form of plates under the surface of a deformable medium [ Postroenie lineinoi teorii dinamicheskogo povedeniya stroitelnykh konstruktsii v vide plastin, nakhodyashchikhsya pod poverkhnost’yu deformiruemoi sredy]. Nauka i mir, 2015, Iss. 5, pp. 46–53.

7. Dzhanmuldaev, B. D. Mathematical methods in the study of oscillations of flat structural elements interacting with a deformable medium: Monograph [Matematicheskie metody pri issledovanii kolebanii ploskikh elementov konstruktsii, vzaimodeistvuyuschikh s deformiruemoi sredoi: Monografiya]. Kyzylorda, 2002, 214 p.

8. Lyav, A. Mathematical theory of elasticity [Matematicheskaya teoriya uprugosti]. Moscow–Leningrad, ONTI publ., 1935, 674 p.

9. Morse, P. M., Feshbach, H. Methods of Theoretical Physics [Metody teoreticheskoi fiziki]. Moscow, Innostrannaya literatura, 1958, Vol. 1, 2, 854 p.

10. Filippov, I. G., Cheban, V. G. Mathematical theory of oscillations of elastic and viscoelastic plates and rods [ Matematicheskaya teoriya kolebanii uprugikh i vyazkouprugikh plastin i sterzhnei]. Chisinau, Shtiintsa, 1988, 190 p.

11. Loktev, A. A., Loktev, D. A. Transverse impact of a ball on a sphere with allowance for waves in the target. Technical Physics Letters, 2008, Vol. 34, No. 11, pp. 960– 963.

12. Loktev, A. А., Loktev, D. А. Solution of the problem of the shock interaction of a solid body and a spherical shell by the ray method [Reshenie zadachi udarnogo vzaimodeistviya tverdogo tela i sfericheskoi obolochki luchevym metodom]. Bulletin of Voronezh State University. Series: Physics. Maths, 2007, Iss. 2, pp. 128–135.

13. Sychev, V. P., Loktev, A. A., Loktev, D. A., Vinogradov, V. V. Increase in informative value of railway track maintenance assessment. World of Transport and Transportation, Vol. 15, 2017, Iss. 2, pp. 20–31.

14. Rossikhin, Yu. A., Shitikova, M. V., Loktev, A. A. The analysis of thin-walled building structures subjected to impact excitation. In: 4th International Ph. D. Symposium in Civil Engineering, 2002, pp. 487–492.

15. Loktev, A. A., Impact of a viscoelastic body on an elastic isotropic plate [Udar vyazkouprugogo tela po uprugoi izotropnoi plastinke]. Mekhanika kompozitsionnykh materialov i konstruktsii, 2007, Iss. 3, pp. 417–425.

16. Loktev, A. А. Elastic lateral impact on a circular orthotropic plate [Uprugiy poperechniy udar po krugloi ortotropnoi plastinke]. Pisma v Zhurnal tekhnicheskoi fiziki, 2005, Iss. 18, pp. 4–9.


Review

For citations:


Dzhanmuldaev B.D., Loktev A.A., Alenov K.T., Fazilova Z.T. Transverse Oscillation of a Base Slab Section of Ballastless Track. World of Transport and Transportation. 2019;17(2):72-78. https://doi.org/10.30932/1992-3252-2019-17-2-72-78

Views: 384


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1992-3252 (Print)