On Forecasting Navigation Seasons with Markov Chains
https://doi.org/10.30932/1992-3252-2019-17-2-16-25
Abstract
The transport network in the regions of the North of theRussian Federationbasically remains seasonal (waterways, winter roads). The duration of river shipping season, depending on the climatic conditions, is 110–160 days, and the time of operation of winter roads varies within 120–210 days. Under these conditions, the accuracy of predicting the beginning and end of shipping season for the northern rivers plays a very important role. The article proposes a method for forecasting the duration of ice phenomena in the areas of shipping routes based on the use of the mathematical apparatus of Markov chains. An estimate of probability of an accurate forecast is given, taking into account the conformity with Bayes theorem and related dependencies. Verification of the method on the basis of real data proved that the forecast accuracy and probability of its implementation were sufficient for timely and effective organisation of preparatory operations for next shipping season on northern navigable rivers.
About the Authors
N. A. FilippovaRussian Federation
Filippova, Nadezhda A. – Ph.D. (Eng), associate professor
Moscow
V. N. Bogumil
Russian Federation
Bogumil, Veniamin N. – Ph.D. (Eng), associate professor �ент
V. M. Belyaev
Russian Federation
Belyaev, Vladimir M. – D.Sc. (Eng), professor of the department of management
References
1. Vlasov, V. М., Efimenko, D. B., Zhankaziev, S. V. Use of GIS in dispatching technology of routed transport [Ispolzovanie GIS v tekhnologii dispetcherskogo upravleniya marshrutizirovannym transporom]. Moscow, MADI, 2007, 72 p.
2. Obyazov, V. A., Smakhtin, V. K. The ice regime of the Transbaikal rivers under the conditions of a changing climate [Ledoviy rezhim rek Zabaikalya v usloviyakh izmenyayushchegosya klimata]. Vodnie resursy, 2014, Iss. 3, pp. 227–234.
3. Ventzel, E. S., Ovcharov, L. A. The theory of random processes and its engineering applications [Teoriya sluchainykh protsessov i ee inzhenernie prilozheniya]. 2nd ed. Moscow, Vysshaya shkola publ., 2000, 383 p.
4. Ventzel, E. S., Theory of Probability: Textbook [Teoriya veroyatnostei: Uchebnik]. 4th ed., stereotypical. Moscow, Nauka publ., 1969, 576 p.
5. Gnedenko, B. V., Khinchin, A. Ya. An elementary introduction to probability theory [Elementarnoe vvedenie v teoriyu veroyatnostei]. 2nd ed. Moscow, Nauka publ., 1970, 169 p.
6. Vlasov, V. М., Efimenko, D. B. Coordinatetemporal and navigational support (KVNO) as a unified information basis for automation of basic technologies in transport [Koordinatno-vremennoe I navigatsionnoe obespechenie (KVNO) kak edinaya informatsiionnaya osnova avtomatizatsii bazovykh tekhnologii na transporte]. Fundamental and applied coordinate-temporal and navigational support: Proceedings of the 2nd All-Russian Conference. St. Petersburg, IPA RAS, 2007. [Electronic
7. Information technologies for automobile transport: A textbook for students of higher education institutions [Informatsionnie tekhnologii na avtomobilnom transporte: Uchebnik dlya studentov uchrezhdenii vysshego obrazovaniya]. Moscow, Academia publ., 2014, 256 p.
8. Vlasov, V. M., Bogumil, V. N., Efimenko, D. B. Use of digital infrastructure and telematic systems in urban passenger transport: Textbook [Primenenie tsifrovoi infrastruktury i telematicheskih system na gorodskom passazhirskom transporte: Uchebnik]. Moscow, Infra-M publ., 2018, 352 p.
9. Vlasov, V. M., Maktas, B. Ya., Bogumil, V. N., Konin, I. V. Wireless technologies in road transport. Global navigation and vehicle positioning: Study guide [Besprovodnie tekhnologii na avtomobilnom transporte. Globalnaya navigatsiya i opredelenie mestopolozheniya transportnykh sredstv: Ucheb. posobie]. Moscow, Infra-M publ., 2017, 184 p.
10. Filippova, N. A., Belyaev, V. M. Analysis of the process of managing the mass delivery to Northern regions in modern market conditions [Analiz protsessa upravleniya severnym zavozom v sovremennykh rynochnykh usloviyakh]. Gruzovoe i passazhirskoe avtokhozyaistvo, 2010, Iss. 9, pp. 17–20.
11. Filippova, N. A., Belyaev, V. M. Adaptive mathematical model for optimizing the delivery of goods in the conditions of the North [ Adaptivnaya matematicheskaya model dlya optimizatsii zavoza gruzov v usloviyakh Severa]. Gruzovoe i passazhirskoe avtokhozyaistvo, 2013, Iss. 11, pp. 17–20.
12. Filippova, N. A. Methodology of organization and functioning of the systems of cargo delivery to the northern regions: Monograph [ Metodologiya organizatsii i funktsionirovaniya system dostavki gruzov v severnie regiony: Monografiya]. Moscow, Tekhpoligraftsentr, 2015, 208 p.
13. Belyaev, V. M., Filippova, N. A. Fundamentals of Transport System Organization in Northern Regions. World of Transport and Transportation, Vol. 15, 2017, Iss. 1, pp. 162–167.
14. Efimenko, D. B., Maksimyche v, O. I. , Ostroukh, A. V., Zbavitel, P. Yu., Ivakhnenko, A. M., Karelina, M. Y. Technology of Monitoring and Control Algorithm Design for Earth-Moving Machine. International Journal of Applied Engineering Research, 2016, Vol. 11, Iss. 9, pp. 6430–6434.
15. Efimenko, D., Ostroukh, A., Nuruev, Ya., Zhankaziev, S., Moroz, D. Automated dispatching control system of the mobile concrete batching plants. ARPN Journal of Engineering and Applied Sciences, Vol. 11, Iss. 11, June 2016, pp. 6733–6737.
16. Bogumil, V., Efimenko, D. Urban Transport Dispatch Control System Helps to Increase Intelligent Transport Systems Effectiveness. In: Proceedings of the 11th European transport congress, Prague, September 19–20, 2013, pp. 20–25.
17. Bhouri, N., Balbo, F., Pinson, S. An agent-based computational approach for urban traffic regulation. Progress in Artificial Intelligence, 2012, pp. 139–147, DOI: 10.1007/s13748-012-0011-0.
Review
For citations:
Filippova N.A., Bogumil V.N., Belyaev V.M. On Forecasting Navigation Seasons with Markov Chains. World of Transport and Transportation. 2019;17(2):16-25. https://doi.org/10.30932/1992-3252-2019-17-2-16-25