Preview

World of Transport and Transportation

Advanced search

Digital Model: Behavior Forecast in Transport Processes

https://doi.org/10.30932/1992-3252-2019-17-2-6-14

Abstract

In today’s world, many processes and events depend on forecasting. With development of mathematical models, an increasing number of factors influencing the final result of the forecast are taken into account, which in turn leads to the use of neural networks. But for training a neural network, source data sets are required, which are often not always sufficient or may not exist at all. The article describes a method of obtaining information as close to reality as possible. The proposed approach is to generate input data using simulation models of an object. The solution of a problem of generation of data sets and of training of a neural network is shown at the example of a typical marshalling railway station, and of a simulation of operations of a shunting hump. The considered examples confirmed the validity of the proposed methodological approach to generation of source data for neural networks using simulation models of a real object, based on a digital mathematical model, which makes it possible to obtain a simulation model of movement of transport objects, which is reliable in forecasting transport processes and creating relevant control algorithms.

About the Authors

V. N. Gridin
Center for Information Technology in Design of the Russian Academy of Sciences,
Russian Federation

Gridin, Vladimir N. – D.Sc. (Eng), professor, scientific director 

Moscow



V. V. Doenin
Russian University of Transport
Russian Federation

Doenin, Viktor V. – D.Sc. (Eng), professor 

Moscow



V. V. Panishchev
Center for Information Technology in Design of the Russian Academy of Sciences,
Russian Federation

Panishchev, Vladimir S. – Ph.D. (Eng), senior researcher 

Moscow



I. S. Razzhivaykin
Russian University of Transport
Russian Federation

Razzhivaykin, Igor S. – assistant lecturer 

Moscow



References

1. . Doenin, V. V. Adaptation of transport processes [Adaptatsiya transportnykh protsessov]. Moscow, Sputnik+ publ., 2009, 219 p.

2. Doenin, V. V. Modeling of transport processes and systems [Modelirovanie transportnykh protsessov i system]. Moscow, Sputnik+ publ., 2012, 288 p.

3. Katalevsky, D. Yu. Basics of simulation modeling and system analysis in management: Study guide [Osnovy imitatsionnogo modelirovaniya i sistemnogo analiza v upravlenii: Ucheb. posobie]. 2nd ed., rev. and enl. Moscow, Delo publ., 2015, 496 p.

4. Kupriyashkin, A. G. Basics of system modeling: Study guide [Osnovy modelirovaniya system: Ucheb. posobie]. Norilsk, Norilsk industrial institute publ., 2015, 135 p.

5. Vakulenko, S. P., Golubev, P. V. Calculation of the throughput and processing capacity of the station [Raschet propusknoi i pererabatyvayushchei sposobnosti stantsii]. Moscow, MIIT publ., 2004, 108 p.

6. Koreshkov, A. N., Kiselev, A. N., Sapezhinski, F. N., Borodina, E. V., Panin, V. V. Organization of the work of the marshalling station [Organizatsiya raboty sortirovochnoi stantsii]. Moscow, MIIT publ., 2008, 88 p.

7. Maksimey, I. V., Sukach, E. I., Giruts, P. V., Erofeeva, E. A. Simulation modeling of the probability

8. characteristics of the railway network functioning [Imitatsionnoe modelirovanie veroyatnostnykh kharakteristik funktsionirovaniya zheleznodorozhnoi seti]. Matematicheskie mashiny i sistemy, 2008, Iss. 4, pp. 147–153.

9. Maksimey, I. V., Sukach, E. I., Giruts, P. V., Erofeeva, E. A. Automation of stages of development and operation of simulation models of transport systems [Avtomatizatsiya etapov razrabotki i ekspluatastii imitatsionnykh modelei transportnykh system]. Problemy programimirovaniya, 2008, Iss. 4, pp. 104–111.

10. Aleksandrov, A. E., Kovalev, I. A., Permikin, V. Yu. Modeling of transport systems: Study-method. guide [Modelirovanie transportnykh system: Uheb.-metod. posobie]. Yekaterinburg, UrGUPS publ., 2011, 56 p.

11. Lychkina, N. N. Designing the logistics infrastructure of an interregional multimodal logistics center using simulation modeling [Proektirovanie logisticheskoi infrastruktury mezhregionalnogo multimodalnogo logisticheskogo tsentra s primeneniem imitatsionnogo modelirovaniya]. Logistika i upravlenie tsepyami postavok, 2014, Iss. 5, pp. 48–56.

12. Modern problems of the transport complex of Russia: Interuniversity collection of scientific works [Sovremennie problemy transportnogo kompleksa Rossii: Mezhvuz. sb. nauch. trudov]. Ed. by A. N. Rakhmangulov. Magnitogorsk, MGTU publ., 2011, 209 p.

13. The program of simulation modeling of the work of a port railway station with a probabilistic-statistical approach to changing the parameters of the incoming car flow. Certificate of state registration of computer programs No. 2014613827. Registered in the register of computer programs 08.04.2014. R. G. Korol, P. V. Danilenko [Programma imitatsionnogo modelirovaniya raboty priportovoi zheleznodorozhnoi stantsii s veroyatnostnostatisticheskim podkhodom k izmeneniyu parametrov postupayushchego vagonopotoka. Svidetelstvo o gosudarstvennoi registratsii programmy dlya EVM No. 2014613827. Zaregistrirov. v reestre program dlya EVM 08.04.2014. R. G. Korol, P. V. Danilenko].

14. Karasev, S. V., Sivitsky, D. A. Distribution of marshalling operations within a railway sector using dynamic programming [Raspredelenie sortirovochnoi raboty na poligone metodom dinamicheskogo programmirovaniya]. In: Sovershenstvovanie tekhnologii perevozochnogo protsessa. Novosibirsk, 2015, pp. 94–99.

15. Sivitsky, D. A. Improvement of methods for calculating the parameters of marshalling devices for multigroup car selection. Ph.D. (Eng) thesis [Sovershenstvovanie metodov rascheta parametrov sortirovochnykh ustroistv dlya mnogogruppnoi podborki vagonov. Dis… kand. tekh. nauk]. Novosibirsk, SGUPS publ., 2017, 191 p.

16. Osipov, D. V. Improvement of methods for calculating the parameters of the transshipment section of the hump yard. Ph.D. (Eng) thesis [Sovershenstvovanie metodov rascheta parametrov perevalochnoi chasti sortirovochnoi gorki. Dis… kand. tekh. nauk]. Novosibirsk,SGUPS, 2017, 191 p.


Review

For citations:


Gridin V.N., Doenin V.V., Panishchev V.V., Razzhivaykin I.S. Digital Model: Behavior Forecast in Transport Processes. World of Transport and Transportation. 2019;17(2):6-14. https://doi.org/10.30932/1992-3252-2019-17-2-6-14

Views: 508


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1992-3252 (Print)