Preview

World of Transport and Transportation

Advanced search

INTELLIGENT VIDEO ANALYSIS OF DANGEROUS SITUATIONS

https://doi.org/10.30932/1992-3252-2017-15-6-18

Abstract

[For the English abstract and full text of the article please see the attached PDF-File (English version follows Russian version)].The work was supported by the Russian Foundation for Basic Research (Grant No. 17-20-03034). ABSTRACT The article is devoted to development of a system for the intelligent analysis of video recordings of external surveillance cameras, which makes it possible to identify dangerous situations at railway facilities using the example of detection of falls in the track area. A method of preprocessing a video for the purpose of forming a feature space based on the use of background subtraction using the Gaussian mixture method, followed by tracking the movement of a person with the help of the Kalman filter and deformation of the shape of the mobile object as a result of applying the procrustean analysis is proposed. The selection of the optimal composition of the feature space and additional heuristics providing the isolation of episodes of falls from video recording with an average quality of the Cohen’s kappa 0,62 is compared with the visual analysis by the operator. Keywords: railway, safety, video surveillance, intelligent video analysis, motion recognition, machine learning, form analysis.

About the Authors

L. N. Anishchenko
МГТУ им. Н. Э. Баумана
Russian Federation


S. I. Ivashov
МГТУ им. Н. Э. Баумана
Russian Federation


A. V. Skrebkov
Российский университет транспорта (МИИТ)
Russian Federation


References

1. Advances Recognition Systems: Rapid-Access Biometric and Credential Solution, NeoFace Express [Электронный ресурс] / Офиц. сайт корпорации NEC, 2017.URL: https://www.necam.com/ docs/?id=6c812b4d-2a12-40ed-9fea-fae81550c7aa (Доступ 05.11.2017).

2. SMARTGLASSES7 [Электронный ресурс] / Офиц. сайт компании ODG, 2017.URL: https://www.osterhoutgroup.com/pub/static/version1515417478/ frontend/Infortis/ultimo/en_US/pdf/R-7-TechSheet.pdf (Доступ 05.11.2017).

3. Yaniv Taigman, Ming Yang, Marc’Aurelio Ranzato, Lior Wolf.«DeepFace: Closing the Gap to Human-Level Performance in Face Verification», Conference on Computer Vision and Pattern Recognition (CVPR), June 24, 2014.

4. Parkhi [et al].Deep Face Recognition [Электронный ресурс]: URL: https://www.robots.ox.ac.uk/~vgg/ publications/2015/Parkhi15/parkhi15.pdf (Доступ 05.11.2017).

5. Mohammadian A., Aghaeinia H., Towhidkhah F. Video-based facial expression recognition by removing the style variations in Image Processing, IET, 2015, vol.9, No.7, pp.596-603.

6. Iosifidis A., Tefas A., Pitas I. Class-specific Reference Discriminant Analysis with application in Human Behavior Analysis, IEEE Transactions on Human-Machine Systems, 2015, vol.45, no.3, pp.315- 326.

7. Maddalena L., Petrosino A. Stopped Object Detection by Learning Foreground Model in Videos, in IEEE Transactions on Neural Networks and Learning Systems, May 2013, vol.24, no.5, pp.723-735.

8. Amrutha M. P., Vince Paul.Study of Different Obstacle Detection Methods in Railway Track, International Journal of Innovative Research in Computer and Communication Engineering, Jan 2017, vol.5, No.1, pp.1204-1208.

9. Filonenko A., Hernández D. C., Jo K. H. Real-time smoke detection for surveillance, 2015, IEEE13th International Conference on Industrial Informatics (INDIN), Cambridge, 2015, pp.568-571.

10. Rougier C., Meunier J., St-Arnaud A., Rousseau J. Fall detection from human shape and motion history using video surveillance, Proc.21st Int. Conf. AINAW, 2007, vol.2, pp.875-880.

11. Lee T., Mihailidis A. An intelligent emergency response system: Preliminary development and testing of automated fall detection, J. Telemed. Telecare, 2005, vol.11, no.4, pp.194-198.

12. Charfi I., Miteran J., Dubois J., Atri M., Tourki R. Optimised spatio-temporal descriptors for real-time fall detection: comparison of SVM and Adaboost based classification, Journal of Electronic Imaging (JEI), Vol.22.Iss.4, pp.17, October 2013.

13. MathWork Documentation: Create Kalman filter for object tracking [Электронный ресурс] / Офиц. сайт MathWorks, 1994-2017.URL: https://www.mathworks.com/help/vision/ref/configurekalmanfilter.html (Доступ 05.11.2017).

14. Mori G., Malik J. Estimating human body configurations using shape context matching, in Proc. Eur. Conf. Comput. Vision, 2002, vol.2352, pp.150-180.

15. Rougier C., Meunier J., St-Arnaud A., Rousseau J. Robust Video Surveillance for Fall Detection Based on Human Shape Deformation, in IEEE Transactions on Circuits and Systems for Video Technology, May 2011, vol.21, no.5, pp.611-622.


Review

For citations:


Anishchenko L.N., Ivashov S.I., Skrebkov A.V. INTELLIGENT VIDEO ANALYSIS OF DANGEROUS SITUATIONS. World of Transport and Transportation. 2017;15(6):182-193. https://doi.org/10.30932/1992-3252-2017-15-6-18

Views: 258


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1992-3252 (Print)