Today, transportation management is characterized by growing volumes of information, increasingly complex situation management challenges, and ever-shrinking periods of time available for decision-making, especially in the case of high-speed transport systems. To an extent, these factors are corollaries following from the more general problem of «big data» [1] that pervades many different fields. An additional factor affecting management is the problem of reducing or eliminating information uncertainty [2] that has a two-fold cause. Uncertainty is caused, firstly, by the lack of information necessary for making a decision. Secondly, it stems from excessive, and overwhelming, amounts of information that require a long time for their analysis and identification of useful content, which time is comparable to the acceptable decision-making time.

A radical method of transport management known as the information-based approach was suggested [3] that involves the application of various information models. Models of transportation systems [4, 5] are designed to reveal opportunities for the development of transportation services, improving their quality, and predicting the future of the transportation industry. Information modeling is not a simple transfer of methods and models used by information science to the field of transportation. It requires a new array of information and electronic resources and a set of innovative information solutions.

Types of information model

Object models describe objects. The OIM, i.e. object information model, is the best example of concepts used by the information science. Situation models describe situations of objects. The situation information model (SIM) is an example, sometimes referred to as the information situation. The two information models are close to each other but distinct. They are not the only ones that describe objects and situations. Generalized models have been developed, such as the information construction model [6] that can be used to describe either objects or situations as needed.

The key distinction between the OIM and SIM lies in their scopes of applicability. Their shared area is that both are derivatives of the notion of ‘information model.’

Object information model (OIM) [7] is defined as an interrelated set of parameters, the most important links and relations. The term «most important» means that included in the model are essential links and relations, while non-essential ones are left out. This is the general feature of any models, including non-information ones. A formal description of the OIM is provided by the formula:

\[
OIM = F(Po, Cint, Cex, Rint, Rex, I1, I2, SO),
\]

where Po is the object’s parameters, Cint is the internal links between parts of the object, Cex is the external links with other objects and the environment, Rint is the internal information relations between parts...
An information situation model (SIM) is an interrelated aggregate of parameters, links and relations that are the most relevant for a given situation. The intended purpose of the SIM is to describe qualitatively different situations: interactions between objects, behavior of a single object or a group of objects in a given situation, dynamics of the situation irrespective of the objects. A situation is always of a greater scale than a single object or a group of objects in a given situation, dynamics of the situation irrespective of the objects. The intended purpose of the SIM is to describe an individual object.

Situation information model (SIM) is an interrelated aggregate of parameters, links and relations that are the most relevant for a given situation. The intended purpose of the SIM is to describe qualitatively different situations: interactions between objects, behavior of a single object or a group of objects in a given situation, dynamics of the situation irrespective of the objects. A situation is always of a greater scale than an object model. An information situation is always more versatile than an OIM. It is object-oriented. Examples include information situation of interactions between objects, information situation of a moving object, information situation of an object’s state.

A formal description of the SIM is provided by the formula:

$$SIM = F(Ps, Co, Cp, Ros, Rps, IS1, IS2, S).$$

where Ps is the situation’s parameters; Co is the links between objects, Cp is the links between the object’s parameters, Ros is the relations between objects, Rps is the relations between the object’s parameters, $IS1$ is information interactions between objects involved in the situation, $IS2$ is the information impacts in the situation, S is the situations’ systematicity. Pic. 2 provides an example of an information situation described with interactions. It shows seven objects.

Objects are indicated with Oi, relations are shown with dashed lines; links and interactions, with solid lines. Interactions are shown with double-tipped arrows; impacts, with single-tipped arrows. In most cases, closed information situations are systemic and can be viewed as complex systems possessing the full range of systemic properties. Relations supplement states. The former can be relations of hierarchy, equivalency, etc.

Pic. 3 describes an information situation by the object’s states. Links between states are shown with solid lines. States are shown with clear hexagons. The object (O) is represented with a shaded octagon. The picture can describe multiple situations. For instance, a train is at the station of departure (conventionally, State 1); the train is at an interim station (State 5 or O); the train is at the station of destination (conventionally, State 31).

An information situation by states describes a single object that moves across possible fixed states. Such a model is built when we have an initial state and the target state. If the target is not clearly defined but a certain target paradigm is available, then a transition is made from managing by states to managing by positions [8]. An example of such a situation would be a market where ensuring competitiveness is one of management paradigms. In such a case, a comparative analysis is made to determine the object’s position in the information situation. Comparing the object’s position with the positions of the other objects, the analyst works out a strategy for improving the position of the object O in view of the changes in the other positions. Such management will be dynamic and requires a dynamic situation model; the term «position» has two meanings. The spatial position that describes the movement of the object in space, and the parametric position that characterizes the position of the object by a chosen criterion, such as market competitiveness or reliability.

To make the analysis of transport objects more comprehensive, dynamic models need to be used. Transportation vehicles move on a transportation network, a model of which is showed in Pic. 3.

Dynamic models incorporate a temporal dimension, and for this reason such models serve as the basis of management as a time process [9, 10]. When an OIM is moving, it is usually stationary in terms of its internal characteristics. The dynamics are primarily manifested in the situation information model:

$$HMC(t) = F3 [Ps(t), Co(t), Cp(t), Ros(t), Rps(t)].$$

As the dynamics unfold, the information situation of Pic. 3 characterizes the movement of the object, the change in its state and position. In many cases, such analysis uses topological models [11] that not only solve route selection problems but assess the movement’s risks, the current and total cost of the transportation.

In modeling, it is important to keep in mind that transport objects and transport infrastructure exist in real space. For this reason, spatial information and spatial models should be used as building blocks in the construction of information models [12]. In some cases, management modeling needs spatial knowledge [13]. Incorporation of spatial factors into
modeling necessitates the use of geoinformatics methods and geoinformatics models [14]. In addition, modern spatial modeling relies widely on aerospace technologies. This requires integration of remote sensing and geoinformatics technologies.

A tool for assessing the uncertainty

Information uncertainty may be caused by a variety of factors, three of which can be singled out as the most salient. Out of the three, two are diametric opposites: deficit of information, and excess of information. In cognitive terms, these are described as «opacity» and «indiscernibility». The third factor is related to the advent of high-speed transport and is manifested in the shortening of the time available for decision-making.

All these factors can be regarded as objective. In addition to them, another one has emerged: information overload of managers and increased risks associated with the «human factor». Information uncertainty is also driven by various «non-factors» [16]: unawareness, uninformed-ness, untrue information (misunderstanding), inadequate modeling.

Unawareness and uninformed-ness are close but distinct notions. Unawareness is largely subjective. It can arise when the relevant information is available, but the decision-maker has never received it for subjective reasons. Uninformed-ness stems from just a lack of information.

Untrue information (causing fallacies) is related to the availability of information that is plausible but is not fully accurate. The purpose of information interaction and diagnostics, as well as any scientific research, is learning the truth. However, as a consequence of incorrect initial premises, incorrect interpretation of the conditions, errors in logic, etc., an information process may result in a fallacy. A fallacy [17] is normally construed as a type of false statement that is distinct from the other false statements in that it is taken to be true.

Problems in modeling that aims to eliminate uncertainty largely follow from the fact that information uncertainty results from the inadequacy of models simulating a real situation. By now, information modeling has become a more accurate tool that allows the creation of qualitatively different models: models of situations, processes, objects, phenomena. This tool is effective in helping eliminate uncertainty.

Let us review some situation models that contain uncertainty. An elementary one would be «The train is set to arrive at its destination late». This is a statement model that contains uncertainty without any quantitative measure.

In practice, models are possible that do contain quantitative assessments of uncertainty. For example, the train will be at the station on time with a probability of 0.5; another situation, the train will be at the station late with a probability of 0.15. These variants are disparate and together they create a complex information situation.

A complex information situation will contain both true and false information. To process such information, the Dempster–Shafer theory (DST) is used [18]. This is a mathematical theory of evidence that is based on the belief function (Bel) and the plausible reasoning function (Pl), which functions are used to combine parts of a disparate information situation for the purpose of calculating probabilities of events.

The belief function is the probability of an event: Bel: P(X) → [0, 1]. Let X be the universe, i.e. the set of all states of a system (statements under review). The power set \(2^X \) contains all subsets of set X, including the empty set \(\emptyset \). For example, if \(X = \{a, b\} \), then \(2^X = \{\emptyset, \{a\}, \{b\}, \{a, b\}\} \).

The elements of the power set can be taken to represent assumptions on the actual state of the system that contains all the states for which the statement is true, and only such states. The proof of a theory assigns a mass of belief to each element of the power set. The notion of mass (m) is introduced, borrowed in part from physics, and in part from the probability theory. Formally, a function \(r: 2^X \rightarrow [0, 1] \) is called a basic belief assignment (BBA), when it has two properties:

1. The mass of the empty set equals zero: \(\tau(\emptyset) = 0 \).
2. The masses of the remaining members of the power set add up to a total of 1:
 \[\sum_{A \in 2^X} m(A) = 1. \]

The mass \(m(A) \) of member A, a given member of the power set, expresses the proportion of all relevant and available evidence that supports the claim that the actual state belongs to A but to no particular subset of A. The value of \(m(A) \) pertains only to the set A, and makes no additional claims about any subsets of A, each of which have, by definition, their own mass. From the mass assignments, the upper and lower bounds of a probability interval can be defined.

This interval contains the precise probability of a set of interest \(P(A) \) (in the classical sense), and is bounded by two non-additive continuous measures called belief (or support) and plausibility. Bel(A) ≤ P(A) ≤ Pl(A).

The belief Bel(A) for a set A is defined as the sum of all the masses of subsets of the set of interest:

\[Bel(A) = \sum_{B \subseteq A} m(B). \]

The plausibility Pl(A) is the sum of all the masses of the sets B that intersect the set of interest A:

\[Pl(A) = \sum_{B \subseteq A, B \neq \emptyset} m(B). \]

\[Pl(A) = 1 - Bel(A^c), \] for all \(A \in P(X) \).

Pic. 4 illustrates the relationship between the belief function and the plausibility function.

DST allows to interpret belief and plausibility as the bounds of the interval where the true value of a hypothesis is possible: belief < a measure of truth < plausibility.

Here, it is postulated that:

• belief in a hypothesis is constituted by the sum of the masses of all sets enclosed by it;
• plausibility is defined as 1 minus the sum of the masses of all sets that contradict or reject the hypothesis.

In essence, DST uses an approach of fuzzy oppositions. The difference between a statement and the opposing statement defines the area of uncertainty.

For example, let us assume that we have the hypothesis «the train arrives on schedule». If, for this hypothesis, belief is 0.5 and plausibility 0.85, then it means that we have evidence (with a total mass of 0.5) that unequivocally indicate that the train arrives on schedule; but there also is evidence (with a total mass of 0.15) that unequivocally indicate that the train does not arrive on schedule (the belief «train does not arrive» = 1–0.85 = 0.15). The remaining mass (complementing 0.5 and 0.15 to 1.0 = 0.35), the gap
between the plausibility of 0.85 and the belief 0.5, constitutes the «uncertainty» or evidence that the train definitely exists but asserting nothing about whether or not the train arrives on schedule. The interval [0.5; 0.85] characterizes the uncertainty of the initial hypothesis’s truthfulness based on the available evidence.

Thus, an information situation model that includes a probability characteristic makes it possible to assess uncertainty not only qualitatively but also quantitatively. This, in turn, allows the use of such assessments in automated and smart systems for the purpose of improving the quality and reliability of management.

Conclusion

The application of object and situation models in transport management is a method to improve efficiency in operating the transport industry, and a basis for improving management theory and practices. In the transport industry, modern management is making an accelerated transition from heuristic methods to methods involving automatics and smart equipment and techniques. The difficulty of this transition is caused by the difficulty of formalizing situations that contain uncertainty.

The method suggested above makes it possible to formalize such uncertainty and process situations automatically. Object and situation models reduce, by orders of magnitude, the scope of information that must be analyzed by humans, and make it possible to use such models for decision-making in situation rooms. That said, Dempster–Shafer theory is just one of many approaches to uncertainty assessment, and needs to be further developed.

REFERENCES

4. Lyovin, B. A., Mamaev, E. A., Baginova, V. V. On the concept of construction of the models of transport industrial systems [O konceptii postroeniya modelej

![Picture 4. Relationship between the belief function and the plausibility function.](image-url)

Information about the authors:

Lyovin, Boris A. – D.Sc. (Eng), professor, rector of Russian University of Transport, Moscow, Russia, tu@miit.ru.

Tsvetkov, Victor Ya. – D.Sc. (Eng), professor, deputy head of the centre of strategic analysis and development of Research, Design and Project Institute of Railway Informatics, Automatics and Communications (NIIAS), Moscow, Russia, cvj2@mail.ru.

Article received 30.05.2017, accepted 23.08.2017.