УЛК 629.424.1

Евгений КОССОВ Evgeny E. KOSSOV

О процессах расформирования составов и их имитации

ADMINISTRATION, MANAGEMENT AND CONTRO

Ирина КУЗНЕЦОВА Irina A. KUZNETSOVA

On Processes of Train Breaking-up and their Imitation (текст статьи на англ. яз. – English text of the article – p. 154)

Показаны основные особенности расформирования состава с сортировочной горки, методика определения показателей для тепловоза с учетом переменного веса. Даны результаты расчетов по разработанному алгоритму при представлении горочной работы в виде единичных режимов и анализа затрат топлива и времени выполнения операций на фоне переходных процессов. Проведено сравнение показателей маневровой горочной работы (надвиг-роспуск) для тепловозов ЧМЭЗ и ТЭМ7, предложен критерий оценки использования того или иного локомотива.

<u>Ключевые слова:</u> железная дорога, станция, сортировочная горка, маневровый тепловоз, единичный режим, надвиг, роспуск, переменный вес состава, имитационное моделирование.

Кузнецова Ирина Алексеевна — старший преподаватель Московского государственного университета путей сообщения (МИИТ), Москва, Россия.

Коссов Евгений Евгеньевич — доктор технических наук, профессор, главный научный сотрудник ОАО «ВНИЙЖТ», Москва, Россия.

перации расформирования составов с включением сортировочной горки относятся к наиболее энергозатратным и тяжелым с точки зрения использования мощности маневрового тепловоза и зависят в основном от крутизны пути надвига, скорости движения, веса состава, типа локомотива и режима его применения [1]. Процесс надвига и роспуска состава сопряжен с частой сменой положения рукоятки контроллера, что обуславливает работу дизеля преимущественно в переходных режимах [2].

Что касается динамики, то поддержание равномерной скорости надвига и роспуска состава достигается при равенстве ускоряющих и замедляющих усилий [3]. Из двух соседних позиций контроллера следует выбирать позицию, которая обеспечивает поддержание скорости, близкой к необходимой. При этом отклонение фактической скорости от требуемой зависит от параметров и конструкции надвижной и спускной частей горки, степени ее автоматизации.

Для имитации процессов расформирования состава с сортировочной горки разработаны алгоритм и специальная про-

Рис. 1. Схематическое изображение процесса надвига: а) исходное положение; б) сам процесс.

грамма. Обоснования программы тяговых расчетов для маневровой работы и заключения по адекватности модели нашли отражение в научной периодике [4].

При расформировании состава вес является величиной переменной, и для каждого момента имитирования процесса в публикуемой статье предложено его определение по представленной ниже методике.

Принято, что исходной позицией перед разгоном считается момент, когда голова состава находится в начале подъема.

Длина состава L_с и длина сцепа вагонов *L* определяются по формулам: (1)

 $L_{c} = L_{\theta} + L_{\text{NOK}} L_{\theta} = m \times L_{\theta},$

где L_{лок} – длина локомотива, м;

m – количество вагонов;

 L_{a1} – длина одного вагона, м (в нашем случае принято 14,4 м).

На рис. 1 даны обозначения, используемые при расчетах:

 L_1 – длина предгорочного пути, м;

*L*₂-длина пути надвижной части горки (на уклоне), м;

 S_{-} пройденный путь, м.

Так как при выполнении процесса расформирования состава на сортировочной горке вагоны могут находиться одновременно на участках пути с различным уклоном, а вес расформировываемого состава представляет собой величину переменную, то сопротивление движению w₀" вагонов рассчитывается по формуле:

 $w_0'' = (l_1 \times (Q/L_g) \times \omega_0'' + l_2 \times i \times (Q/L_g)) \times 10^{-3}, \quad (2)$ где l, – длина пути, пройденного вагонами при движении без учета уклона на предгорочном отрезке, м;

 l_2 — длина пути, пройденного вагонами при движении на надвижной части горки, м;

i – уклон надвижной части горки;

 ω_o'' — удельное сопротивление движению вагонов, Н/кН;

Q – вес вагонов состава, Н.

Ускорение состава (a_2), кинетическая работа вагонов ($\Sigma E_{\kappa une2}$) и общая кинетическая работа ($E_{\kappa un2}$) при роспуске определяются из выражений:

$$a_{2}=(F_{k}-w_{Q}"-w_{n}')/(m_{Q}-(S-L_{2})\times \times ((Q/L_{g})/g)+m_{n}),$$

$$\Sigma F = \Sigma q \times \Lambda S \times (m_{2}-(S-L_{2})\times K) \times (3)$$

 $\sum E_{\kappa un e2} = \sum a_i \times \Delta S_i \times (m_Q - (S - L_2) \times (Q/L_g)/g)), \qquad (4)$ $E_{max} = (m_Q - (S - L_2) \times (4))$

×
$$((Q/L_g)/g) + m_g) \times (V_{i-I} + \Delta V_i)^2/2,$$
 (5)

 w_{a}' – сопротивление движению локомотива, H;

 w_{Q} " — сопротивление движению вагонов, H;

g — коэффициент ускорения силы тяжести, м/с²;

*m*_{*n*} — приведенная масса локомотива с учетом инерции вращающихся масс, кг;

 m_Q – приведенная масса вагонов с учетом инерции вращающихся масс, кг;

V_{i-1} – скорость движения за предыдущий интервал интегрирования по времени, м/с;

 ΔV_i – приращение скорости, м/с.

В зависимости от длины сцепа вагонов и надвижной части горки выполняются первый или второй вариант расчета из описанных ниже.

1. Когда длина сцепа вагонов больше длины надвижной части горки $L_{e}>L_{2}$, расчет показателей работы тепловоза в единичных режимах «разгон» и «движение с постоянной скоростью» при надвиге-роспуске состава с сортировочной горки производится следующим образом:

1.1. Надвиг состава совершается при условии, что $S < L_e < L_2$ до момента, когда $S = L_2$, при этом величины l_p , l_2 будут принимать значения: $l_1 = L_e$, $l_2 = S$.

В этом случае величины сопротивления движению вагонов w_Q'' и потенциальная работа вагонов $\sum E_{nom \ el}$ рассчитываются по формулам:

 $w_{QI}'' = (L_{\theta} \times (Q/L_{\theta}) \times \omega_{o}'' + S \times i \times (Q/L_{\theta})) \times 10^{-3}$ (6) $\Sigma E_{nom eI} = \Sigma i \times \Delta S_{i} \times S (Q_{\theta}/L_{\theta}),$ (7) где ΔS_{i} – приращение пути, м. 1.2. Роспуск состава начинается, когда длина пройденного вагонами пути равна длине надвижной части горки $S=L_{2}$.

1.2.1. Если $S>L_2$, но $S<L_a$, величины l_p , l_2 принимают значения: $l_1=L_a+L_2-S$, $l_2=L_2$, а расчет сопротивления движению вагонов и их потенциальной работы производится по формулам:

$$w_{Q3}^{"} = ((L_e + L_2 - S) \times (Q/L_e) \times \omega_o^{"} + L_2 \times i \times (Q/L_e)) \times 10^{-3};$$

$$\Sigma E_{nome3} = \Sigma i \times \Delta S_i \times L_2 \times (Q_e/L_e).$$
(8)
(9)

1.2.2. При $S > L_2$ и $S > L_a$ величины l_i , l_2 равны и принимают значения $l_1 = l_2 = L_a$ + $L_2 - S$, а величины сопротивления движению вагонов и их потенциальная работа определяются формулами:

$$\begin{split} & w_{Q4}^{\prime\prime} = ((L_e + L_2 - S) \times (Q/L_e) \times \omega_o^{\prime\prime} + (L_e + L_2 - S) \times \\ & \times i \times (Q/L_e)) \times 10^{-3}; \end{split} \tag{10} \\ & \Sigma E_{nome4} = \sum i \times \Delta S_i \times (Q_e - (S - L_2) \times (Q_e/L_e). \tag{11}$$

Когда длина пройденного вагонами пути становится равной длине вагонов состава $S=L_s$, локомотив вступает на подъем и его сопротивление движению $w_{_{ni}}$, рассчитывается по формуле:

$$W_{_{ni2}}{}'=P_{_{A}}\times(i+\omega_{_{oi}}{}')\times 10^{-3},$$
 (12)
где $P_{_{A}}$ – вес локомотива, H;

 ω_{oi}' — удельное сопротивление движению локомотива, H/кH.

1.2.3. При $S = (L_2 + L_g)$ весь состав расформирован.

2. В случае, когда длина состава меньше длины надвижной части горки $L_e < L_2$, расчет показателей работы тепловоза в единичных режимах «разгон» и «движение с постоянной скоростью» при надвиге-роспуске состава на сортировочной горке выполняется иначе, а именно:

2.1. Надвиг состава выполняется до момента, при котором значение пройденного пути будет равно длине пути надвижной части горки, и включает в себя два этапа.

2.1.1. Первый этап продолжается до момента, когда $S=L_{a}$; расчет сопротивления движению вагонов и их потенциальной работы производится по формулам:

 $w_{o_{l}}'' = (L_{e} \times (Q/L_{e}) \times \omega_{o}'' + S \times i \times (Q/L_{e})) \times 10^{-3};$ (13) $\Sigma E_{nom e_{l}} = \Sigma i \times \Delta S_{i} \times S \times (Q_{e}/L_{e}),$ (14) а величины l_{l}, l_{2} принимают значения $l_{l} = L_{e}, l_{2} = S.$

Когда длина пройденного вагонами пути становится равной длине вагонов состава $S=L_s$, локомотив вступает на подъем, его сопротивление движению w_{ni} рассчитывается по формуле (12).

Кузнецова И.А., Коссов Е.Е. О процессах расформирования составов и их имитации

Рис. 3. Показатели работы тепловоза при выполнении единичного режима «надвиг-движение с постоянной скоростью»: а) энергетические показатели; б) показатели выполненной работы.

Рис. 4. Показатели работы тепловоза при выполнении единичного режима «роспуск-движение с постоянной скоростью»: а) энергетические показатели; б) показатели выполненной работы.

На рис. 2–4 F_k – касательная сила тяги, H; P_e – мощность дизеля, B; η_{ткрок} – КПД тепловоза на крюке; K_n – коэффициент потерь, м/с; V_{i-1} – скорость движения за предыдущий интервал интегрирования по времени, м/с; B_r – расход топлива, кг; E_e – диссипативная работа, Дж; E_{con} – кинетическая работа, Дж; E_{norn} – потенциальная работа локомотива, Дж; E_{nore} – потенциальная работа вагонов, Дж; E_{norn} – работа торможения, Дж.

149

● МИР ТРАНСПОРТА, том 13, № 5, С. 146–159 (2015)

Кузнецова И.А., Коссов Е.Е. О процессах расформирования составов и их имитации

Сводная таблица показателей при выполнении маневровой операции из суммы единичных режимов

N⁰	Наименование	Размерность	Обозначение	Формула	Расчетная величина
1	Локомотив			Серия	ЧМЭ3
2	Вес состава	Н		Q _c	13097700
3	Количество вагонов в составе	ваг.		m	30
4	Время	с		ΣΤ	667,6
5	Путь	М		ΣS	832,32
6	Расход топлива	КГ		ΣB	7,63
7	Диссипативная работа вагонов	Дж	Е _{св 0}	$\sum W \otimes_Q \bullet \Delta S_i$	69693949
8	Диссипативная работа локомо- тива	Дж	Е _{сл 0}	$\sum w'_{\pi} \cdot \Delta S_{i}$	7701854
9	Кинетическая работа вагонов	Дж	Е	$\sum a_i \cdot m_i \cdot \Delta S_i$	2127861
10	Кинетическая работа локомотива	Дж	Екин л	$\sum a_i \cdot m_\pi \cdot \Delta S_i$	118370
11	Работа торможения	Дж	Еторм	$\Sigma B_{t} \cdot \Delta S_{i}$	111243
12	Потенциальная работа вагонов	Дж	Епот в 0	$\sum i \cdot Q_{_{\rm B}} \cdot \Delta S_{_{\rm i}}$	62830255
13	Потенциальная работа локомо- тива	Дж	Е _{пот л 0}	$\sum \mathbf{i} \cdot \mathbf{P}_{\pi} \cdot \Delta \mathbf{S}_{\mathbf{i}}$	5782638
14	Работа на крюке	Дж	Екрюк	$\Sigma F_{\rm kkpiok} \cdot \Delta S_{\rm i}$	70874418
15	Работа на колесе	Дж	Екол	$\Sigma F_{k} \cdot \Delta S_{i}$	78579255
16	КПД тепловоза на крюке		η _{ткрюк}	$\Sigma F_{k \kappa p i \kappa} \cdot \Delta S_i / (H_u \cdot B_i)$	0,218
17	КПД тепловоза общий		η _{т.οбщ}	$\Sigma F_{k} \cdot \Delta S_{i} / (H_{u} \cdot B_{i})$	0,241
18	Производительность	ваг/час	П	3600 m/∑T	162

Таблица 2

Распределение расхода топлива и времени работы тепловоза при расформировании состава с горки

Время работы по позициям контроллера										
Позиция	0	1	2	3	4	5	6	7	8	Сумма
Время Т, с	18,00	92,00	225,40	238,60	90,40	2,80	0,60	0,00	0,00	667,80
Время Т,%	2,70	13,78	33,75	35,73	13,54	0,42	0,09	0,00	0,00	100,00
Расход топлива по позициям контроллера										
Позиция	0	1	2	3	4	5	6	7	8	Сумма
Расход топлива В, кг	0,0512	0,4312	2,0375	3,3130	1,7062	0,0715	0,0183	0,0000	0,0000	7,6289
Расход топлива В, %	0,67	5,65	26,71	43,43	22,37	0,94	0,24	0,00	0,00	100,00
Величина расхода топлива в % без учета переходных процессов									1,7336	
Расход топлива без учета переходных процессов по позициям контрол							ра			
Позиция	0	1	2	3	4	5	6	7	8	Сумма
Расход топлива В _{уст} , кг	0,0512	0,4245	1,9918	3,2784	1,6753	0,0621	0,0155	0,0000	0,0000	7,4989
Расход топлива В _{уст} , %	0,68	5,66	26,56	43,72	22,34	0,83	0,21	0,00	0,00	100,00
Время работы при переходном процессе по позициям контроллера										
Позиция	0	1	2	3	4	5	6	7	8	Сумма
Время Т _{пер} , с	0,00	2,20	14,20	9,80	8,00	2,20	0,60	0,00	0,00	37,00
Время Т _{пер} , %	0,00	5,95	38,38	26,49	21,62	5,95	1,62	0,00	0,00	100,00

● МИР ТРАНСПОРТА, том 13, № 5, С. 146-159 (2015)

Кузнецова И.А., Коссов Е.Е. О процессах расформирования составов и их имитации

Рис. 5. Гистограммы распределения расхода топлива и времени работы тепловоза при выполнении операции надвиг-роспуск (единичные режимы: надвиг-разгон, надвиг-движение с постоянной скоростью, роспуск-движение с постоянной скоростью, торможение): а) распределение расхода топлива по позициям контроллера машиниста при расчете работы в установившемся режиме и с учетом переходных процессов в дизеле; б) распределение времени работы тепловоза по позициям контроллера машиниста при расчете работы в установившемся режиме и с учетом переходных процессов.

2.1.2. Второй этап продолжается до тех пор, пока соблюдаются условия: $S > L_a$, но $S < L_2$, при этом величины l_1 , l_2 принимают значения $l_1 = l_2 = L_a$, а сопротивление движению вагонов и их потенциальная работа имеют вид:

$$\begin{split} & w_{Q2}^{"} = (L_{e} \times (Q/L_{e}) \times \omega_{o}^{"} + L_{e} \times i \times \\ & \times (Q/L_{e})) \times 10^{-3}; \\ & \Sigma E_{nom e2} = \Sigma i \times \Delta S_{i} \times L_{e} \times (Qe/L_{e}). \end{split}$$
(15)

2.2. Роспуск состава начинается, когда выполняется равенство $S = L_2$, и длится до полного его расформирования, то есть весь процесс может быть представлен условием $L_2 < S < L_s + L_2$. Расчет необходимых величин выполняется по описанию, приведенному в подпункте 1.2.2. В подпункте 1.2.3. ука-

зано, в каком случае состав считается полностью расформированным.

Результаты расчета показателей выполнения основных единичных маневровых режимов работы тепловозом ЧМЭЗ [5] при расформировании состава из 30 вагонов на сортировочной горке с использованием описанной методики определения веса состава, положений ПТР [6] и коэффициента потерь [7] графически представлены на рис. 2–4.

Особое внимание при анализе результатов расчета уделено затратам топлива и времени.

Расчеты показали, что большую часть времени при разгоне тепловоз работает в условиях переходных процессов, и соот-

Рис. 6. Графическое изображение комплексного критерия W при надвиге-роспуске составов тепловозами ЧМЭЗ и ТЭМ7 с тремя остановками при ухудшенных условиях сцепления.

ветственно расход топлива, полученный при расчетах, имеет наиболее адекватное значение, когда переходные процессы учтены. Ошибка в определении расхода топлива при расчетах без учета переходных процессов в данном случае достигает 25%. Это соотношение может меняться в зависимости от веса состава, режимов разгона и других составляющих. Поскольку скорости надвига-роспуска составов невелики, процесс разгона проходит на невысоких позициях контроллера, для приведенного примера позиции 7, 8 контроллера не используются, а работа на позиции 6 занимает 6% от общего времени разгона.

При выполнении единичного режима «надвиг-движение с постоянной скоростью» переходные процессы составляют незначительную часть, ошибка достигает 1,6%. В этом режиме тепловоз работает большую часть времени на позициях 2 и 3 контроллера.

Аналогичная картина при выполнении единичного режима «роспуск-движение с постоянной скоростью». В этом случае величина расхода топлива, не учитываемая при тяговых расчетах без учета переходных процессов, составляет 0,9%. Следует брать во внимание, что наличие переходных процессов и их продолжительность зависят и от режима управления тепловозом.

Результаты расчетов в целом при выполнении операции надвиг-роспуск представлены в сводных таблицах 1, 2 и на рис. 5.

Из таблицы 2 видно, что по операции надвиг-роспуск в данном случае ошибка в определении расхода топлива при расчетах без учета переходных процессов составляет 1,7%.

Таким же образом при помощи программы тяговых расчетов было выполнено моделирование горочной работы для тепловозов ЧМЭЗ и ТЭМ7. Расчеты проведены для сортировочной горки с уклоном надвижной части 12‰ длиной 400 м при числе вагонов в составе от 5 до 70.

Моделирование горочной работы показало, что при наличии в составе более 45 вагонов тепловоз ЧМЭЗ при нормальных условиях сцепления теряет производительность на ≈13,1%. Если условия сцепления колес с рельсами ухудшаются, то при более чем 50 вагонах операция надвига вообще может быть не выполнена. В то же время при количестве вагонов менее 45 тепловоз ЧМЭЗ на ≈10,9% экономичнее тепловоза ТЭМ7.

Критерием оценки целесообразности применения того или иного тепловоза может служить [8]:

W=B•T=min, при $E_{\kappa p}$ =const, (17) где $E_{\kappa p}$ – работа выполняемая тепловозами на крюке.

Величина критерия W становится меньше для тепловоза ТЭМ7 по сравнению с тепловозом ЧМЭ3 при числе расформировываемых вагонов более 45 (см. рис. 6).

Материалы по близкой к исследованиям тематике также отражены в различных публикациях [9–13].

выводы

1. Имитация процессов расформирования состава с сортировочной горки в виде суммы единичных режимов с моделированием реальных процессов в силовых установках и варьированием веса состава в виде случайной величины позволяет с высокой достоверностью выполнить расчет показателей работы маневрового тепловоза, уточнить расход топлива и выявить наиболее рациональные режимы управления тепловозом.

2. На примере тепловоза ЧМЭЗ показаны влияние переходных процессов в дизеле на расход топлива при работе в различных единичных режимах и доля расхода топлива, приходящегося на тот или иной режим. Наибольшее влияние на показатели работы оказывает единичный режим «разгон». Ошибка в расчете расхода топлива без учета переходных процессов при этом режиме может составлять до 25%.

3. Анализ выполнения маневровой горочной работы (надвиг-роспуск) для тепловозов ЧМЭЗ и ТЭМ7 позволил обосновать критерий для оценки целесообразности использования того или иного локомотива.

4. Приведенный метод определения энергетической эффективности работы локомотивов с учетом фактических технических характеристик может быть полезен для специалистов тепловозной тяги.

ЛИТЕРАТУРА

1. Przewodnik do analizy koszt w i korzy ci projekt w inwestycyjnych. Raport ko cowy: Komisja Europejska. Dyrekcja Generalna ds. Polityki Regionalnej, 2008. – 294 p.

2. Гончаров Ю. Г., Ганкевич Т. Ц., Петров В. Е. Управление тепловозом и его обслуживание. – М.: ВИПО МПС, 1961. – 182 с.

3. Бобровский В.И., Демченко Е.Б. Совершенствование имитационной модели процесса надвига и роспуска составов на сортировочных горках // Транспортные системы и технологии перевозок. – Днепропетровск, 2012. – № 3. – С. 5–9.

4. Кузнецова И.А., Коссов Е.Е. К оценке эффективности работы маневрового локомотива путем моделирования режимов работы // Вестник транспорта Поволжья. – 2014. – № 4. – С. 40–50.

5. Railfaneurope.net http://www.railfaneurope.net/ list frameset.html. Доступ 07.04.2015.

6. Гребенюк П. Т., Долганов А. Н., Некрасов О. А. и др. Правила тяговых расчетов для поездной работы. – М.: Транспорт, 1985. – 287 с.

7. Коссов Е.Е., Кузнецова И.А. К вопросу совершенствования методов имитации поездной работы маневрового тепловоза // Вестник ВНИИЖТ. – 2013. – № 1. – С. 22–26.

 Коссов Е. Е., Сухопаров С. И. Оптимизация режимов работы тепловозных дизель-генераторов. – М.: Интекст, 1999. – 184 с.

9. http://cyberleninka.ru/article/n/ sovershenstvovanie-imitatsionnoy-modeli-protsessanadviga-i-rospuska-sostavov-na-sortirovochnyh-gorkah. Доступ 22.10.2015.

10. http://cyberleninka.ru/article/n/model-sistemyupravleniya-peredvizheniem-podvizhnogo-sostava-nasortirovochnyh-gork|ah#ixzz3qkIdrgaB. Доступ 22.10.2015.

11. http://cyberleninka.ru/article/n/optimizatsiyarezhimov-rasformirovaniya-sostavov-na-sortirovochnyhgorkah#ixzz3qkK49dxT. Доступ 22.10.2015.

12. http://cyberleninka.ru/article/n/otsenka-rashodatopliva-manevrovymi-teplovozami-pri-rasformirovaniisostavov-na-sortirovochnyh-gorkah#ixzz3qkMnZu3P. Доступ 22.10.2015.

13. http://www.dieselloc.ru/books/oil/oil9.html. Доступ 22.10.2015. 153

Координаты авторов: **Кузнецова И.А.** – irina-к3@yandex.ru, **Коссов Е. Е.** – vozopaevamv@yandex.ru.

Статья поступила в редакцию 10.04.2015, актуализирована 22.10.2015, принята к публикации 23.10.2015.

● МИР ТРАНСПОРТА, том 13, № 5, С. 146–159 (2015)

Кузнецова И.А., Коссов Е.Е. О процессах расформирования составов и их имитации

ON PROCESSES OF TRAIN BREAKING-UP AND THEIR IMITATION

Kuznetsova, Irina A., Moscow State University of Railway Engineering (MIIT), Moscow, Russia, Kossov, Evgeny E., JSC VNIIZhT, Moscow, Russia.

ABSTRACT

The basic features of train breaking-up at a hump yard, method of determining indicators for a diesel locomotive with account of variable weight are shown. The calculation results regarding the developed algorithm are given in the presentation of the hump yard work in the form of individual modes and analysis of fuel consumption and time of operations against transients. A comparison of shunting hump operations (thrust breaking-up) at the example of diesel locomotives CHME3 and TEM7 is performed, the criterion of evaluation of the use of a certain type of a locomotive is proposed.

Keywords: railway, station, hump yard, shunting locomotive, individual mode, thrust, breaking-up, variable weight of a train, simulation.

Background. Operations of train breaking-up with inclusion of a hump yard belong to the most energy-consuming and difficult in terms of using the power of a shunting locomotive and depend mainly on the steepness of humping track, speed, train weight, locomotive type and its application mode [1]. The process of thrust and breaking-up of the train is associated with frequent changes in positions of the controller handle, which causes the work of diesel engine mainly in transient modes [2].

With regard to dynamics, maintenance of uniform speed of thrust and breaking-up of the train is achieved with equal accelerating and decelerating forces [3]. Out of two adjacent positions of the controller a position should be selected that maintains speed from to the desired. This deviation of the actual speed from the required depends on parameters and design of parts of a hump, degree of its automation.

To simulate the process of train breaking-up at the hump vard, an algorithm and a special program were developed. Justification of traction calculations program for shunting work and conclusion on adequacy of the model are reflected in the scientific literature [4].

Objective. The objective of the authors is to study processes of train breaking-up at a hump yard. In case of train breaking-up train weight is a variable, and for each moment of simulation process in this paper, its definition is proposed according to the procedure described below.

Methods. The authors use general scientific and engineering methods, comparative analysis, mathematical study, simulation.

Results. It is assumed that initial position before acceleration is the time when the train head is at the beginning of the ascending grade.

Length of a train L, and length of car tractive connection L are determined by the formulas:

 $L_i = L_c + L_{loc}$, $L_c = m \cdot L_{c_i}$, where L_{loc} is a length of a locomotive, m; (1)

m is a number of cars:

 L_{c1} is a length of one car, m (in our case it is taken as 14,4 m).

Pic. 1 provides designations, used in calculations: L, is a length of pre-hump track, m;

L is path length of a thrust part of a hump (on a slope), m;

S is distance covered, m.

Since in the process of train breaking-up at the hump vard cars may be located simultaneously at track sections with different slope, and weight of the dissolved train is a variable value, resistance to move- $\begin{array}{l} ment \ w_{o}'' \ of \ cars \ is \ calculated \ as \ follows: \\ w_{o}''=(I_{1}(Q/L_{c})\cdot \omega_{o}''+I_{2}\cdot i\cdot (Q/L_{c}))\cdot 10^{-3}, \end{array}$

where I, is distance covered by cars while driving without account of a slope on the pre-hump section, m;

I is distance covered by cars while driving on the thrust part of the hump, m;

 ω_{o} is specific resistance to movement of cars, N/kN;

Q is weight of cars of the train, N.

Acceleration of the train (a_2) , kinetic work of cars $(\Sigma E_{kin c^2})$ and total kinetic work (E_{kin^2}) at breaking-up are determined from the expressions:

 $a_2 = (F_k - w_0'' - w_n')/(m_0 - (S - L_2) \cdot ((Q/L_2)/g) + m_n),$ (3)

WORLD OF TRANSPORT AND TRANSPORTATION, Vol. 13, Iss. 5, pp. 146–154 (2015)

Pic. 2. Performance indicators of the locomotive in individual mode «thrust-acceleration»: a) energy indicators; b) indicators of work performed.

Pic. 3. Performance indicators of the locomotive in individual mode «thrust-movement at constant speed»: a) energy indicators; b) indicators of work performed.

In Pic. 2–4 F_k – rail tractive effort, N; P_e – power of locomotive, V; $_m$ – locomotive efficiency on hitch; K_{los} – coefficient of losses, m/s; $V_{l,1}$ – speed in previous interval of time integration, m/s; B_t – fuel consumption, kg; E_d – dissipative work, J; E_{kin} – kinetic work, J; E_{potl} – potential work of locomotive, J; E_{pote} – potential work of cars, J; E_b – energy braking, J.

• WORLD OF TRANSPORT AND TRANSPORTATION, Vol. 13, Iss. 5, pp. 146-154 (2015)

Kuznetsova, Irina A., Kossov, Evgeny E. On Processes of Train Breaking-up and their Imitation

7

$$\sum E_{kinc2} = \sum a_i \Delta S_i (m_Q - (S - L_2) \cdot ((Q/L_t)/g)),$$

 $E_{kin2} = (m_o - (S - L_2) \cdot ((Q/L_2)/g) + m_1 \cdot (V_{i-1} + \Delta V_i)^2 / 2, \quad (5)$ where F_k is rail tractive effort, N;

w,' is resistance to locomotive movement, N;

 w'_{q} '' is resistance to cars movement, N;

g is acceleration coefficient of gravity, m/s^2 ;

*m*_i is reduced mass of locomotive with account of inertia of rotating masses, kg; *m*_o is reduced mass of cars with account of inertia

of rotating masses, kg;

 $V_{i,i}$ is speed of the previous range of integration over time, m/s;

 ΔV_i is speed increment, m/s.

Depending on length of tractive connection of cars and thrust part of a hump the first or the second calculation options from below described are selected.

1. When the length of tractive connection of cars is greater than the length of thrust part of a hump $L_c>L_{2^*}$ calculation of performance of locomotive in individual modes «acceleration» and «movement at constant speed» at thrust–breaking-up of the train at the hump yard is performed as follows:

1. 1. The train thrust is performed under the condition that $S < L_c < L_2$ till the moment when $S = L_2$, and the quantities I_{i} , I_2 will take values: $I_i = L_2$, $I_2 = S$.

In this case, the value of resistance to movement of cars w_0 " and potential work of cars ΣE_{potc1} is calculated as follows:

$$\begin{split} & W_{OI}^{"} = (L_c(Q/L_c) \cdot \omega_o^{"} + S \cdot i \cdot (Q/L_c)) \cdot 10^{-3}; \qquad (6) \\ & \sum E_{ootcl} = \sum i \cdot \Delta S_j \cdot S(Q_c/L_c), \qquad (7) \end{split}$$

where ΔS is path increment, m.

1.2. Train breaking-up starts when distance covered by cars is equal to the length of thrust part of a hump $S=L_2$.

1.2.1. If $S > L_2$, but $S < L_c$, quantities I_1 , I_2 take values: $I_1 = L_c + L_2 - S$, $I_2 = L_2$, and calculation of resistance to car movement and their potential work is performed by the formulas:

$$\begin{split} & \mathsf{W}_{Q3}^{"} = ((L_c + L_2 - S) \cdot (Q/L_c) \cdot \omega_o^{"} + L_2 \cdot i \cdot (Q/L_c)) \cdot 10^{-3}; \quad (8) \\ & \sum E_{cot_1 + 2} = \sum i \cdot \Delta S_i \cdot L_2 \cdot (Q_c/L_c). \end{split}$$

1.2.2. At $S > L_2$ and $S > L_2$ quantities I_1 , I_2 are equal and take values $I_1 = I_2 = L_2 + L_2 - S$, and quantities of resistance to car movement and their potential work are determined by the formulas:

$$W_{Q4}^{\prime\prime} = ((L_c + L_2 - S) \cdot (Q/L_i) \cdot 0_0^{\prime\prime} + (L_c + L_2 - S) \cdot (Q/L_i) \cdot 10^{-3} \cdot (Q/L_i) \cdot (Q$$

$$\sum_{\substack{p_{orc} \neq -\Sigma i}} (A_i - A_i) (A_i -$$

when distance covered by cars becomes equal to the length of cars of the train $S=L_c$ locomotive enters the ascending grade and its resistance to movement w_i is calculated by the formula: $w_i = D_c (i+w_i) \cdot 10^{-3}$ (12)

$$W_{\mu2} = P_i (I + \omega_{ol}') \cdot 10^{-3},$$
 (12)
where P_i is locomotive weight, N;

 $\omega_{\alpha'}$ is specific resistance to locomotive movement, N/kN.

1.2.3. At $S=(L_2+L_2)$ the total train is dissolved.

2. In case where the length of the train is less than the length of the thrust part of a hump $L_c < L_2$, calculation of performance of locomotive in individual modes «acceleration» and «movement at constant speed» at thrust–breaking-up of the train at the hump yard is performed differently, namely:

2.1. The thrust of train is carried out until the moment in which the value of the distance covered is equal to the path length of the thrust part of the hump, and includes two stages.

2.1.1. The first stage continues until the moment when $S=L_c$; calculation of resistance to car movement and their potential work is performed by formulas: $w_{01}"=(L_c \cdot (Q/L_c) \cdot \omega_o"+S \cdot i \cdot (Q/L_c)) \cdot 10^{-3}$. (13) $\sum_{potc1} = \sum i \cdot \Delta S_i \cdot S \cdot (Q_o/L_o),$ and quantities I_1, I_2 take values $I_1 = L_o, I_2 = S$.

(4)

(14)

When the length of the path covered by cars becomes equal to the length of cars of the train $S=L_s$, locomotive enters on the ascending grade, its resistance to movement w_{ii} 'is calculated by the formula (12).

2.1.2. The second phase continues until the conditions are met: S>L, but S<L₂, and the quantities I_{1} , I_{2} take values $I_{1}=I_{2}=L_{c}^{2}$ and resistance to movement of cars and their potential work have the form:

2.2. The breaking-up of the train begins when the equation is met $S=L_2$ and lasts until its total breaking-up, that is, the whole process can be represented by the condition $L_2<S<L_2+L_2$. The calculation of necessary values is performed according to the description given in paragraph 1.2.2. In subparagraph 1.2.3 it is specified in which case the train is considered to be completely dissolved.

Results of calculation of performance indicators of main individual shunting modes of locomotive CHME3 [5] at breaking-up of the train, consisting of 30 cars, at the hump yard using the described methods for determining train weight, provisions of rules of traction calculations [6] and coefficient of losses [7] are graphically represented in Pic. 2–4.

Particular attention is paid to losses of fuel and time in the analysis of calculation results.

Calculations have shown that most of the time during acceleration locomotive operates in a transient mode and therefore fuel consumption, resulting in the calculation is the most appropriate value when the transients are taken into account. Error in determining fuel consumption in calculations excluding transients in this case reaches 25%. This ratio may vary depending on train weight, acceleration modes and other constituents. Since the speeds of thrust-breaking-up of trains are low, the acceleration process takes place at low positions of the controller, for example position of 7, 8 of the controller are not used, and the work at the position 6 takes 6% of the total acceleration time.

In individual mode «thrust–movement at constant speed» transients make up a small part, the error reaches 1,6%. In this mode, the locomotive works most of the time at the positions 2 and 3 of the controller.

A similar picture is in individual mode «breakingup-movement at constant speed». In this case, fuel consumption, not included in traction calculations without taking into account transients, is 0,9%. It should be taken into account that the presence of transients and their duration depend on the locomotive control mode.

The calculation results in operations thrust– breaking-up are presented in summary tables 1 and 2 and in Pic. 5.

Table 2 shows that in the operation thrust–breaking-up in this case the error in fuel consumption determination in calculations without taking into account transients is 1,7%.

In the same way with the help of the program of traction calculations hump works for locomotives CHME3 and TEM7 were modeled. The calculations were performed for the hump yard with a slope of thrust part 12‰ length of 400 m with the number of cars in the train from 5 to 70.

Simulation of hump work showed that with more than 45 cars in the train locomotive CHME3 under

• WORLD OF TRANSPORT AND TRANSPORTATION, Vol. 13, Iss. 5, pp. 146-154 (2015)

(10)

№	Name	Unit of measurement	Designation	Formula	Computed value
1	Locomotive			Serie	CHME3
2	Train weight	N		Q _t	13097700
3	Number of cars in the train	car.		m	30
4	Time	s		ΣΤ	667,6
5	Distance	m		ΣS	832,32
6	Fuel consumption	kg		ΣB	7,63
7	Dissipative work of cars	J	E _{dc 0}	$\sum W W_{Q} \bullet \Delta S_{i}$	69693949
8	Dissipative work of locomotive	J	E _{dl 0}	$\sum W'_{1} \cdot \Delta S_{i}$	7701854
9	Kinetic work of cars	J	E _{kin c}	$\sum a_i \cdot m_i \cdot \Delta S_i$	2127861
10	Kinetic work of locomotive	J	E _{kin l}	$\sum a_i \cdot m_1 \cdot \Delta S_i$	118370
11	Braking	J	E _b	$\Sigma B_{f} \cdot \Delta S_{i}$	111243
12	Potential work of cars	J	E _{pot c 0}	$\sum i \cdot Q_c \cdot \Delta S_i$	62830255
13	Potential work of locomotive	J	E _{pot 10}	$\sum i \cdot P_1 \cdot \Delta S_i$	5782638
14	Work on hitch	J	E _h	$\Sigma F_{kh} \cdot \Delta S_{i}$	70874418
15	Work on wheel	J	E	$\Sigma F_{k} \cdot \Delta S_{i}$	78579255
16	Efficiency of locomotive on hitch		lh	$\Sigma F_{kh} \cdot \Delta S_i / (H_u \cdot B_i)$	0,218
17	General efficiency of locomotive		lg	$\Sigma F_{k} \cdot \Delta S_{i} / (H_{u} \cdot B_{i})$	0,241
18	Performance	car/h	Р	3600 m/∑T	162

Summary table of indicators in the performance of shunting operation of the sum of individual modes

Table 2

Distribution of fuel consumption and operating time of the locomotive in case of train breaking-up at the hump

					•		-			
Operating time on posi	tions of th	he contro	ller							
Position	0	1	2	3	4	5	6	7	8	Sum
Time T, s	18,00	92,00	225,40	238,60	90,40	2,80	0,60	0,00	0,00	667,80
Time T, %	2,70	13,78	33,75	35,73	13,54	0,42	0,09	0,00	0,00	100,00
Fuel consumption on p										
Position	0	1	2	3	4	5	6	7	8	Sum
Fuel consumption B, kg	0,0512	0,4312	2,0375	3,3130	1,7062	0,0715	0,0183	0,0000	0,0000	7,6289
Fuel consumption B, %	0,67	5,65	26,71	43,43	22,37	0,94	0,24	0,00	0,00	100,00
					-					
	Fuel consumption amount in % excluding transients								1,7336	
Fuel consumption excl	uding tra	nsients or	n position	s of the co	ontroller					
Position	0	1	2	3	4	5	6	7	8	Sum
Fuel consumption B _{st} , kg	0,0512	0,4245	1,9918	3,2784	1,6753	0,0621	0,0155	0,0000	0,0000	7,4989
Fuel consumption B _{st} , %	0,68	5,66	26,56	43,72	22,34	0,83	0,21	0,00	0,00	100,00
Operating time at trans										
Position	0	1	2	3	4	5	6	7	8	Sum
Time T _u , s	0,00	2,20	14,20	9,80	8,00	2,20	0,60	0,00	0,00	37,00
Time T ₁ , %	0,00	5,95	38,38	26,49	21,62	5,95	1,62	0,00	0,00	100,00

• WORLD OF TRANSPORT AND TRANSPORTATION, Vol. 13, Iss. 5, pp. 146–154 (2015)

Kuznetsova, Irina A., Kossov, Evgeny E. On Processes of Train Breaking-up and their Imitation

Pic. 5. Histograms of distribution of fuel consumption and operation time of the locomotive when performing thrust–breaking-up (individual modes: thrust–acceleration, thrust–movement at a constant speed, breaking-up–movement at constant speed, braking): a) distribution of fuel consumption on positions of the controller when calculating work in steady mode and taking into account transients in a diesel engine; b) distribution of operation time of the locomotive on positions of the controller when calculating work in steady mode and taking into account transients.

normal adhesion conditions, loses performance by \approx 13,1%. If the conditions of adhesion of wheels with rails deteriorate, then with more than 50 cars thrust operation generally cannot be performed. At the same time with the number of cars less than 45 locomotive CHME3 is \approx 10,9% more efficient than locomotive TEM7.

The criteria for assessing appropriateness of a particular locomotive can serve [8]:

 $W=B \cdot T=min$, at $E_{h}=const$, (17) where E_{h} is work performed by locomotives on hitch.

The magnitude of the criterion W becomes smaller for locomotive TEM7 as compared with locomotive CHME3 with a number of dissolved cars more than 45 (Pic. 6).

Information on topics related to the research can be also found in Web-sources [9–13].

Conclusions.

1. Simulation of processes of train breaking-up at the hump yard as of the sum of individual modes with simulation of real processes in power plants and by varying train weight in the form of a random variable allows with high reliability to perform calculation of shunting locomotive performance, to specify fuel consumption and to identify the most rational modes of locomotive control. 2. The example of locomotive CHE3 shows the impact of transients in diesel engine on fuel consumption when operating in different individual modes, and the proportion of fuel consumption attributable to one or another mode. The greatest influence on the performance is made by individual mode «acceleration». The error in the calculation of fuel consumption without transients in this mode can be up to 25%.

3. Analysis of the performance of shunting hump work (thrust–breaking-up) for locomotives CHME3 and TEM7 allowed to justify criteria to assess expediency of locomotive use.

4. The above method of determining locomotive energy efficiency based on actual technical specifications can be useful for specialists of diesel traction.

REFERENCES

1. Przewodnik do analizy koszt w i korzy ci projekt w inwestycyjnych. Raport ko cowy: Komisja Europejska. Dyrekcja Generalna ds. Polityki Regionalnej, 2008, 294 p.

2. Goncharov, Yu. G., Gankevich, T. C., Petrov, V. E. Driving and maintenance of locomotive [*Upravlenie teplovozom i ego obsluzhivanie*]. Moscow, VIPO MPS, 1961, 182 p.

3. Bobrovsky, V. I., Demchenko, E. B. Improvement of simulation model of thrust and breaking-up of trains at

• WORLD OF TRANSPORT AND TRANSPORTATION, Vol. 13, Iss. 5, pp. 146–154 (2015)

Pic. 6. Graphic representation of complex criterion W at thrust–breaking-up of trains by locomotives CHME3 and TEM7 with 3 stops under worsened adhesion conditions.

humps yards [Sovershenstvovanie imitatsionnoj modeli protsessa nadviga i rospuska sostavov na sortirovochnyh gorkah]. Transportnye sistemy i tehnologii perevozok, Dnepropetrovsk, 2012, Iss. 3, pp. 5–9.

4. Kuznetsova, I. A., Kossov, E. E. On evaluating the performance of shunting locomotive by simulation of operation modes [*Kotsenke effektivnosti raboty manevrovogo lokomotiva putem modelirovanija rezhimov raboty*]. Vestnik transporta Povolzh'ja, 2014, Iss. 4, pp. 40–50.

5. Railfaneurope.net [Electronic resource]: http:// www.railfaneurope.net/list_frameset.html. Last accessed 07.04.2015

6. Grebenyuk, P. T., Dolganov, A. N., Nekrasov, O. A. [*et al*]. Rules of traction calculations for train operation [*Pravila tjagovyh raschetov dlja poezdnoj raboty*]. Moscow, Transport publ., 1985, 287 p.

7. Kossov, E. E., Kuznetsova, I.A. On improving train work imitation methods of shunting locomotive [*Kvoprosu* sovershenstvovanija metodov imitatsii poezdnoj raboty manevrovogo teplovoza]. Vestnik VNIIZhT, 2013, Iss. 1, pp. 22–26. 8. Kossov, E. E., Sukhoparov, S. I. Optimization of operating modes of locomotive diesel generators [*Optimizatsija rezhimov raboty teplovoznyh dizel'-generatorov*]. Moscow, Intekst publ., 1999, 184 p.

9. http://cyberleninka.ru/article/n/ sovershenstvovanie-imitatsionnoy-modeli-protsessanadviga-i-rospuska-sostavov-na-sortirovochnyh-gorkah. Last accessed 22.10.2015.

10. http://cyberleninka.ru/article/n/model-sistemyupravleniya-peredvizheniem-podvizhnogo-sostava-nasortirovochnyh-gorkah#ixzz3qkIdrgaB. Last accessed 22.10.2015.

11. http://cyberleninka.ru/article/n/optimizatsiyarezhimov-rasformirovaniya-sostavov-na-sortirovochnyhgorkah#ixzz3qkK49dxT. Last accessed 22.10.2015.

12. http://cyberleninka.ru/article/n/otsenka-rashodatopliva-manevrovymi-teplovozami-pri-rasformirovaniisostavov-na-sortirovochnyh-gorkah#ixzz3qkMnZu3P. Last accessed 22.10.2015.

13. http://www.dieselloc.ru/books/oil/oil9.html. Last accessed 22.10.2015.

Information about the authors:

Kuznetsova, Irina A. – senior lecturer at Moscow State University of Railway Engineering (MIIT), Moscow, Russia, irina-k3@yandex.ru.

Kossov, Evgeny E. – D.Sc. (Eng.), senior researcher of JSC VNIIZhT, Moscow, Russia, vozopaevamv@yandex.ru.

Article received 10.04.2015, revised 22.10.2015, accepted 23.10.2015.

• WORLD OF TRANSPORT AND TRANSPORTATION, Vol. 13, Iss. 5, pp. 146–154 (2015)

Kuznetsova, Irina A., Kossov, Evgeny E. On Processes of Train Breaking-up and their Imitation