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aBstract
The article describes design diagrams of four-axle 

rail flat car with two anti-symmetrically located heavy 
cargos with elastic dissipative elements (supports), 
whose common center of mass coincides with the 
center of mass of a flat car. The authors pose a 
problem of safety of a flat car’s movement, caused by 
dislocation of the center of mass of cargo, its weight, 
speed of movement, certain parameters of elastic 
and dissipative supports, with regard to stability of 
the wheel against possible derailment and risk of 
transversal dumping of a car in rail track’s curves 
due to transversal horizontal forces. It is the reason 
to study, first of all by theoretically, the dynamics of a 
car, to determine admissible limits of transversal and 
longitudinal dislocation of the center of mass of cargo 
with regard to the axis of symmetry of a car, and to find 
rational parameters of elastic and dissipative supports 
for cargo that ensure safety of traffic.

The developed design diagrams are based on the 
mechanical system «flat car – cargo» that includes 13 
solid bodies (car frame, two cargos, four side frames, 
two bars over springs, four wheelsets of two bogies). 
The authors studied bouncing, rocking, rolling, side 
drifting, wobbling of a car and cargo, as well as 
bouncing, rocking, rolling of side frames of bogies and 
wobbling of bogies.

The authors propose algebraic expressions to 
determine deformation of spring sets and supports for 
cargo, deformation of the track with determined vertical 
and horizontal irregularities, reaction of the rail to the 
wheels’ impact (if there are quenching forces of viscous 
friction and unilateral relation of wheels and rails), and 
vertical and horizontal forces influencing spring sets 
and elastic dissipative supports for cargo.

In order to develop differential equations the 
researchers used d’Alambert’s principle. They 
developed a system of 23 differential equations, 
describing spatial oscillation of a flat car.

eNglish suMMary
Background. Many of heavy-weight goods 

transported by flat cars have own springing or vertical 
and transversal horizontal elastic and dissipative 
supports based on a car frame, serving to reduce 
dynamic forces and to increase safety of delivered 
goods (cars, road and construction machines, car-
mounted hoisting cranes).

When cargo is located anti-symmetrically, the 
loading capacity of a car is used in a more efficient 
way and fewer cars are needed. But when cargo is 
located anti-symmetrically and with regard to some 
features of elastic and dissipative supports it is possible 
to come across a risk of oscillation amplitudes that can 
have negative impact on safety of a car’s movement 
resulting in reduced stability against derailment and 
transversal dumping of a car when moving in curves 
of rail track.

Void specifications of loading [1] foresee rules 
of anti-symmetric location of two rigid heavy-weight 
cargos without bearing on a car’s floor through elastic 
and dissipative supports, while their common center 
of mass should coincide with the center of mass of a 
car or be very close to it. But those standards can’t be 

used for the cargo with elastic and dissipative elements 
linking it to the frame of a flat car.

There are studies dedicated to oscillation of freight 
cars, particularly for conditions of anti-symmetric 
location of heavy-weight cargo with dislocated center 
of its mass transversally or longitudinally (for one of 
those conditions taken separately) regarding the car. 
The studies [2,3] concern cargo rigidly bearing on the 
car’s floor, and studies [4,5] regard cargo with elastic 
and dissipative elements.

objectives. In order to determine more specific 
parameters it is necessary to theoretically study 
dynamics of a flat car with anti-symmetrically located 
cargo, whose centers of mass are dislocated 
longitudinally or transversally along the car to different 
sides of its symmetry axis, and for conditions when 
common center of mass of the cargos of similar weight 
could coincide with the center of mass of a flat car or 
be dislocated during loading.

Methods. The researchers develop mathematical 
model (geometric design diagram, force design 
diagram, mechanical system of solid bodies, system 
of 23 differential equations based on d’Alambert’s 
principle).

results. In order to study spatial oscillation of a 
flat car with two anti-symmetrically located cargos, 
having similar weight and elastic and dissipative 
elements (supports) and whose common center of 
mass coincides with the center of mass of a flat car if the 
distance from centers of mass of respective cargos to 
the center of mass of a flat car is the same, the authors 
developed geometric design diagram (pic. 1) and force 
design diagrams (pic. 2, 3, 4 for respectively side, top 
and end view).

The authors have studied a mechanical system 
«flat car – cargo» that includes 13 solid bodies (car 
frame, two cargos, four side frames, two bars over 
springs, four wheelsets of two bogies). The centers 
of mass of a platform, and of two cargos are located 
in points О, О1 and О2, the centers of mass of each 
cargo are dislocated from the center of mass of a flat 
car for respective distances Х1 and Х2 longitudinally, 
and for respective distances У1 and У2 transversally.

The generalized taken coordinates are as follow: 
q1 – bouncing of the frame of a flat car, q3 and q5 – 
bouncing of respectively first and second cargo, q2 – 
rocking of the frame of a flat car, q4 and q6 – rocking of 
respectively first and second cargo, q7 – rolling of the 
frame of a flat car, q8 and q9 – rolling of respectively 
first and second cargo, q10 – wobbling of the frame 
of a flat car, q11 and q12 – wobbling of of respectively 
first and second cargo, q13 и q15– bouncing of side 
frames of bogies, q14 and q16 – rocking of side frames 
of bogies, q17 and q18 – wobbling of bogies, q19 and 
q20 – side drifting of respectively first and second 
cargo, q21 – side drifting of the frame of a flat car, q22 
and q23– rolling of side frames of bogies.

Relative vertical deformations of springing sets 
are equal to:

Δкв1 = q1 – q2Lв – q7 B + q22 B – q13,
Δкв2 = q1 – q2Lв + q7 B – q22 B – q13,
Δкв3 = q1 + q2Lв – q7 B + q22 B – q15,
Δкв4 = q1 + q2Lв + q7 B -q22 B – q15.
Relative horizontal deformation of springing sets 

are equal to:

spatial oscillatioN of a rail flat-car
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Δкг1 = q21 – q10 Lв – (ηг1,2 + ηг3,4),
Δкг2 = – q21 + q10 Lв + (ηг1,2 + ηг3,4),
Δкг3 = q21 + q10 Lв – (ηг5,6 + ηг7,8),
Δкг4 = – q21 – q10 Lв + (ηг5,6 + ηг7,8),

where ηгi is an amplitude of horizontal irregularity of a 
track (η = η0 Sin ωt).

Relative vertical deformations of elastic supports 
of cargo are determined by equations:

Δгв1 = q3 – q1 + q4 l1x –q2 (X1 – l1x) – q8 l1y + 
q7 (Y1 + l1y),

Δгв2 = q3 – q1 + q4 l1x – q2 (X1 + l1x) + q8l1y + 
q7 (Y1 – l1y).

Δгв3 = q3 – q1 – q4 l1x – q2 (X1 – l1x) – q8l1y + 
q7 (Y1 + l1y),

Δгв4 = q3 – q1 – q4l1x – q2 (X1 – l1x) + q8l1y + 
q7 (Y1 – l1y),

Δгв5 = q5 – q1 + q6l2x + q2 (X2 – l2x) – q9l2y – 
q7 (Y2 – l2y),

Δгв6 = q5 – q1 + q6l2x + q2 (X2 – l2x) + q9l2y – 
q7 (Y2 + l2y),

Δгв7 = q5 – q1 – q6l2x + q2 (X2 + l2x) – q9l2y – 
q7 (Y2 – l2y),

Δгв8 = q5 – q1 – q6l2x + q2 (X2 + l2x) +q9l2y – 
q7 (Y2 + l2y).

Relative horizontal deformations of elastic supports 
of cargo are determined by equations:

Δгг1 = q19 – q21 + q11l1x – q10 (X1 + l1x) + q8l1z,
Δгг2 = – q19 + q21 – q11l1x + q10 (X1 + l1x) – 

q8l1z,
Δгг3 = q19 – q21 – q11l1x – q10 (X1 – l1x) + q8l1z,
Δгг4 = – q19 + q21 + q11l1x + q10 (X1 – l1x) – 

q8l1z,
Δгг5 = q20 – q21 + q12l2x – q10 (X2 – l2x) – q9l2z,
Δгг6 = – q20 + q21 – q12l2x + q10 (X2 – l2x) +q9l2z,
Δгг7 = q20 – q21 – q12l2x – q10 (X2 + l2x) – q9l2z,
Δгг8 = – q20 + q21 + q12l2x + q10 (X2 + l2x) 

+ q9l2z,
where l1z, l2z are heights of centers of mass of 
respectively first and second cargo over the center 
plate bearing of a flat car.

Vertical deformations of the track are determined 
by equations:

ΔR1 = q13 + q22 S – η1, ΔR2 = q13 – q22 S – η2, 
ΔR3 = q13 + q22S – η3,

ΔR4 = q13 – q22 S –η4, Δ5 = q15 + q23 – η5, ΔR6 
= q15 – q23 S – η6,

ΔR7 = q15 + q23 S – η7, ΔR8 = q15 + q23 S – η8.
Vertical forces, influencing elastic and dissipative 

supports of transported goods, are equal to: Rzi = 
Czi Δгвi + βгi, (I = 1–8),
where Сzi is vertical rigidity of ith elastic and 
dissipative element of cargo,

Δгвi are relative vertical dislocations of ith elastic 
and dissipative element of cargo,

βвi is an equivalent ratio of viscous friction of ith 
elastic and dissipative element of cargo in vertical 
plane.

Transversal horizontal forces in elastic and 
dissipative elements between the cargo and the 
frame of a flat car are equal to:

Rуm = Cym Δгг m + βгm, (m = 1–8),
where Cym is a transversal horizontal rigidity of mth 
elastic and dissipative element of cargo,

Δггm are relative transversal dislocations of 
elastic and dissipative element of cargo,

βгm is an equivalent ration of viscous friction 
mth elastic and dissipative element of cargo in 
transversal plane.

Vertical forces influencing springing sets of a flat 
car are equal to:

Rтвi = Сz Δтвi + βтвi, (I = 1–4),

where Сz is a rigidity of ith springing set in vertical 
plane,

Δтвi are relative vertical dislocations (deflection) 
of ith springing set of a flat car,

βтвi is an equivalent viscous friction of ith springing 
set in vertical plane.

Transversal horizontal forces influencing springing 
sets of a flat car are equal to:

Rтгm = Стгm Δтгm + βтгm тгm, (m = 1–4),
where Стгm is a transversal horizontal rigidity of mth 
springing set of a flat car,

Δтгm are relative transversal dislocations of 
springing set,

βтгm is an equivalent viscous friction of mth 
springing set in horizontal transversal plane.

The moment of friction forces in center plates 
which emerge during bogies’ turning in horizontal plane 
are determined by expression:

Мтр 1,2 = μп,
where d is a diameter of central plate,

μп is a ratio of friction between central plate of a flat 
car and bearing of a central plate of a bogie.

Vertical reactions of springing sets are determined 
by expression:

Pi = Cтв (f – Δ твi) + Fтвi Sign, (I = 1–4), (f + Δтвi) 
> 0,

Pi = 0 (f + Δтвi) < 0,
where Δтвi are vertical deformations of springing sets 
of bogies,

f is static deflection of a springing set of bogies,
Ств is a vertical rigidity of a springing set,
Fтвi is a force of a dry friction.
In order to determine horizontal transversal 

reaction of springing sets it is necessary to replace 
Ств in above expression by Стг which is horizontal 
transversal rigidity of a springing set.

Vertical (Riв) and horizontal (Riг) reactions of a 
rail to wheels’ impact on the rail in case of presence 
of quenching forces of viscous friction in the track 
and of unilateral link between the rail and the wheel 
are equal to:

Riв, г = C (x) [f (x) + Δi] + Fп Sign Δi, (i = 1–8), при 
[(f (x) + Δi] ≥ 0 и

Ri = 0 [f (x) + Δi] < 0,
where C (x) is a vertical rigidity of the track under the 
wheels of a flat car,

f (x) is a static deflection of the track under the 
wheels,

Δi is a dynamic deformation of the track in vertical 
plane,

Fп is a force of dry friction equivalent to static 
deformation of the track under the wheels.

The value of the forces of viscous friction between 
the rail and the wheel is determined by expression, 
developed in the study [6]:

Тi = Sig, (i= 1–8),
where μ is a ratio of friction between the wheel and 
the rail.

The value of horizontal projections of the rails is 
equal to Ni = Ri tg αi,
where αi is an angle of inclination of full reaction force 
of the track from the vertical line, determined by linear 
interpolation on the basis of the table of trajectory of the 
point of contact between wheel and rail, which depends 
on a value of side dislocation of a wheel regarding a 
rail head [6].

The following system of 23 differential equations, 
based on the mathematical expressions above, 
describes spatial oscillations of a flat car with two anti-
symmetrically located heavy-weight cargos with elastic 
and dissipative elements, linking them to a flat car:
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M – (Rz1 + Rz2 + Rz3 + Rz4) – (R + R + R + R) + P1 
+ P2 +P3 + P4 –Mg=0,

Jx + (P3 + P4 – P1 – P2) Lв + (R1z1 + R1z2) (x2 – 
l2x) + (R1z3 + R1z4) (x2 + l2x) –

– (Rz1 + Rz2) (x1 + l1x) – (Rz3 + Rz4) (x1 – l1x) = 0,
m1 = Rz1 + Rz2 + Rz3 + Rz4 – m1 g = 0,
J1x + (Rz1 + Rz2) l1x – (Rz3 + Rz4) l1x = 0,
m2 +R1z1 + R1z2 + R1z3 + R14 – m2 g = 0,
J2x + (R1z1 + R1z2) l2x – (R1z3 + R1z4) l2x = 0,
Jz – (P2 + P4) B + (p1 + P3) B – (Rz1 + Rz3) (У1 + 

l1y) + (Rz2 + Rz4) (У1 –l1y) – – (R1z1+ R1z3) (У2 – l2y) 
+ (R1z2 + R1z4) (У2 + l2y) = 0,

J1z – (Rz2 + Rz4) l1y + (Rz1 + Rz3) l1y + (Ry1 + 
Ry3) l1z – (Ry2 + Ry4) l1z + +Qв1hв1 =0,

J2z – (R1z2 + R1z4) l2y + (R1z1 + R1z3) l2y + (R1y1 
+ R1y3) l2z – (R1y2 + +R1y4) l2z + Qв2hв2 =0,

Jy – (Ry1 –Ry2) (x1 + l1x) – (Ry3 – Ry4) (x1 – l1x) 
+ (R1y4 – R1y3) (x2 + l2x) +

+ (R1y2 – R1y1) (x2 –l2x) – (N2 –N1) (Lв + lт) – 
(N4 – N3) (Lв – lт) + (N6 – N5) x

x (Lв– lт) + (N8 – N7) (Lв + lт) = 0,
J1y + (Ry1 + Ry4) l1x – (Ry2 + Ry3) l1x = 0,
J2y + (R1y1 + R1y4) l2x – (R1y2 + R1y3) l2x = 0,
mт + R1 + R2 + R3 + R4 – P1 – P2 – mт g = 0,
Jтх + (R3 + R4) lт – (R1 + R2) lт – (–) lрк – (–) lрк =0,
mт + R5 + R6 + R7 + R8 – P3 – P4 – mт g = 0,
Jтч + (R7 + R8) lт – (R5 + R6) lт – (-) lрк – (–) lрк = 0,
Jту + (Т 1 + Т 3) S – (Т 2 – Т 4) S + (N2 + N3) lт + 

Мтр1 Sign = 0,
Jту + (Т 5 + Т 7) S + (N6 + N7) lт – (N5 + N3) lт + 

Мтр2Sign = 0,
m1 + Ry1 + Ry3 – Ry2 – Ry4 – Qв1 = 0,
m2 + + – – – Qв2 = 0,
М – Ry1 – Ry3 + Ry2 + Ry4 – R1y1 – R1y3 + R1y2 

+ R1y4 + (N1+ N3 + N5 +N7) –
– (N2 + N4 + N6 + N8) –Qв = 0,
Jzт + (P4 – P3) B + (R5 + R7) S – (R6 + R8) S – (N1 

+ N3 – N5 – N7) = 0,
Jzт + (P2 – P1) S + (R1 + R3) S – (R2 – R4) S – (N2 

+ N4 – N1 – N3) = 0,
where qi are generalized coordinates,

M is a mass of the sprung elements of a flat car 
(frame, bars over the springs of the bogies), m1, m2 is 
a mass respectively of the first and the second cargo,

mт is a mass of not sprung elements of the bogies,
Jx, Jy, Jz are the moments of inertia of sprung 

elements of a flat car regarding respectively axis Х, 
У and Z,

J1x, J1y, J1z are the moments of inertia of the first 
cargo regarding axis Х, У, Z,

J2x, J2y, J2z are the moments of inertia of the 
second cargo regarding respectively axis Х, У, Z,

X1, X2, Y1, Y2 are the distances between the 
centers of mass of respectively first and second cargos,

2l1x, 2l1y, 2l1z, 2l2x, 2l2y, 2l2z are geometric 
dimensions of respectively first and second cargos,

2Lв is the length of a base of a flat car,
2lт is a length of a base of bogie,
2В is a distance between centers of springing sets 

of bogies,
2S is a distance between the circles of driving of 

the wheels of a wheelset,
Qв is a force of the wind that has an impact on the 

frame of a flat car,
Qв1, Qв2 are forces of the wind, that has an impact 

in the side surface of cargos,
Ri are reactions influencing the wheels from the 

part of the track,
Тi are longitudinal forces when wheels are slipping 

along the rails.
conclusions. The developed design diagrams 

and differential equations (mathematical model), 
describing spatial oscillations of a flat car with two 
anti-symmetrically located heavy-weight cargos with 
elastic and dissipative elements of a link to the frame 
of a flat car, allow studying dynamic features of four-
axle rail car, as assessing safety concerning risks of 
derailment and transversal dumping in the curves, as 
well as determining of limits of acceptable transversal 
and longitudinal dislocations of the centers of mass 
of the cargo regarding symmetry axis of a car and 
depending on its weight and traffic speed.

The solution of the described system of differential 
equations can be achieved, for instance, by well-known 
and efficient iteration-difference method of numerical 
integration with automatic choice of integration step, 
developed by professor V. Hussainov, using modern 
personal computers. 
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