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In a harmonious transport system, traffic flows are rationally 
distributed depending on the capacity of roads and streets to 
ensure transit capacity, considering the traffic light control 
systems. At the same time, due attention is not paid to changes 
in weather and natural conditions, which in turn significantly 
adjusts driving regimes, taking them out of a stable, predictable 
state. Modern software and hardware systems and information 
resources of large cities have a wide range of recorded indicators 
that affect distribution of traffic flows. Their automated processing 
using algorithmic machine learning tools has formed a 
comprehensive understanding of the patterns of change in the 
traffic intensity indicator, which is a new stage of improving road 
traffic safety, striving for zero mortality.

The scientific novelty of the study refers to the techniques and 
approaches to studying the weather and climate characteristics and 
factors of the street-and-road network, their preliminary processing 
using modern statistical and logical methods of normalisation and 
eliminating random outliers.

The deep learning method opens wide opportunities for 
analysing the intensity of the road traffic flow. By processing large 
amounts of data, such algorithms are able to identify complex 
patterns and relationships, which improves traffic forecasting and 
optimises traffic management. For correct operation of the neural 
network for training the model and studying the road traffic flow 
intensity, a set of software tools for preliminary data processing has 
been developed, which includes a step-by-step analysis of array 
structures with subsequent replacement of values or elimination of 
errors.

Preliminary data cleaning in accordance with the syntax of the 
program logic and the rules of statistical analysis is followed by 
application of a method for searching and eliminating anomalies 
was used, i.e. the isolation forest method.

This research direction was part of a large study on road traffic 
flow intensity, and the described results are a set of solutions based 
on the system interaction of software and methods of statistical and 
analytical transformations developed by the authors.
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INTRODUCTION
Modern trends in development of information 

technology offer a wide range of data analysis 
capabilities. The presence of large number of 
features make it possible to form various patterns 
of transport environment distribution and 
consider weather conditions in each respective 
environment 1 [1].

Artificial intelligence (AI) is one of the 
promising areas in modern science and 
technology. In recent decades, systems have been 
created that are capable with the use of AI to 
perform complex tasks requiring intellectual 
skills [2; 3].

Modern AI is able to analyse the environment 
and interact with it, interpret and process data, 
learn and adapt itself while evolving. That is why 
the main task of the work is to prepare data for 
an objective assessment of the phenomenon 
under study.

AI is used in many areas, including computer 
vision, natural language processing, robotics, 
autonomous vehicles, medicine, financial 
analytics, etc. In each of these areas, AI makes 
it possible to automate processes, improve 
forecasts and make decisions based on large 
amounts of data and analysis of complex 
models.

The principles of AI are based on various 
approaches and methods for creating computer 
systems that can analyse data, learn and make 
decisions based on the information received. 
Machine learning methods, neural networks and 
deep learning are the main tools in achieving this 
goal.

In this paper, to predict the intensity of road 
traffic flow, the properties of the street-and-road 
network (SRN) are considered to be a classifier 
for categorising transport facilities, and weather 
conditions are assumed to be independent 
variables by which changes in the dependent will 
be predicted [4].

The work contains complex programming 
elements. The initial operations are explained, 
and for the rest of this kind, to reduce duplicating 
information, comments are omitted.

The working window of the PyCharm 
development environment has numbered lines. 
The commands are explained by referring to the 
line number of the provided screenshot of the 
workspace.
1 ODM 218.4.005–2010. Industry road methodological 
document. Recommendations for ensuring road traffic safety 
on motorways.

RESULTS
Backpropagation Neural Network 
Architecture

To confirm the influence of weather 
condit ions,  road geometry and traff ic 
characteristics on traffic flow intensity, as well 
as  to  test  the predict ive capabil i t ies , 
a Backpropagation neural network was used 2.

A Backpropagation neural network is a type 
of neural network that uses the backward 
propagation of errors algorithm for training. The 
basic idea is that the network goes through two 
stages: forward propagation, where the input data 
is transferred from the input layer through the 
hidden layers to the output layer, and 
backpropagation, where the network weights are 
adjusted [5; 6].

The backward propagation of errors process 
begins with calculating the error at the output 
layer. This error is then propagated back through 
the layers of the network, proportional to the 
weights of the connections between neurons, and 
the error at each layer is calculated [8; 9]. Next, 
the neuron weights are adjusted in the direction 
opposite to the error gradient to reduce the error 
on subsequent passes through the network.

For the backpropagation algorithm, it is 
necessary to define the error function. It is 
measured by the difference between the expected 
values and the predicted ones. The mean squared 
error is the most common for regression problems 
and cross entropy for classification problems 
[10].

During training, the network goes through 
several epochs, where each epoch is one pass 
through the entire training set, i. e., all training 
examples [11; 12]. The network weights are 
adjusted in such a way as to minimise the error 
relative to the training data.

It was decided to form the architecture of the 
neural network in the Python programming 
language, using the Keras add-on of the low-level 
TensorFlow library [13].

Keras was developed to facilitate and speed 
up the process of developing deep learning 
models. It provides high-level abstractions for 
building neural networks, hiding most of the 
complexity and details of low-level libraries from 
the developer.

The architecture of a backpropagation neural 
network consists of several main components.
2 Operation of motorways: Study guide. Comp. by: 
I.  N. Pugachev, A.  V. Kamenchukov, N.  S. Nesterova. 
Khabarovsk, Publishing house of FESTU, 2022, 168 p.
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1. Input layer receives as input data that is 
fed to the input of the neural network. In this 
layer, the number of neurons corresponds to the 
dimensionality of the incoming data.

2. Hidden layers perform intermediate 
computational operations. Depending on the 
specific task or architecture of the neural 
network, the number of hidden layers and 
neurons in them changes. Each neuron in the 
hidden layer takes the activation values of the 
previous layer as input and calculates its 
activation value based on the weights that 
connect it to the previous layer.

3. Output layer performs a forecast. The number 
of neurons in the output layer depends on the 
classification or regression problem. For example, if 
a binary classification problem is being solved, then 
the output layer will have one neuron responsible for 
the probability of belonging to a class.

4. Network activation function is used for 
nonlinear transformation of the input data. The 
most common activation functions are sigmoid, 
tanh and ReLU.

5. Backward propagation of errors is an 
algorithm for updating the weights in a neural 

network. It calculates the gradient of the error 
function over all the weights and uses it to 
update the weights to minimise the prediction 
error.

6. Optimiser applies an optimisation 
algorithm to update the weights in a  neural 
network based on the error gradient. Some 
popular optimisers include stochastic gradient 
descent (SGD), Adam, and RMSprop.

7. Loss function determines how well the 
neural network performs on the task at hand. It 
calculates the difference between the predicted 
values and the true values and is used in 
backpropagation to calculate the gradient.

The main components of the backpropagation 
neural network architecture can be changed and 
modified depending on the specific task and 
requirements [14; 15].

The block diagram of the neural network is 
shown in Pic. 1.

Initially, the neural network structure was 
based on data analysis without preliminary 
processing and validation [16]. Testing the model 
after training showed the ineffectiveness of the 
forecast. This is due to the large number of 

Pic. 1. Block diagram of a backpropagation neural network [performed by the authors].
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incoming neurons. Therefore, it was decided to 
group quantitative features. As a  result, it was 
necessary to change the approaches to creating 
a neural network [17].

To implement the program according to the 
above algorithm, a  virtual environment was 
created in the PyCharm integrated development 
environment. This had to be done primarily for 
more convenient management of project 
dependencies, and to make the development 
process more convenient and focused.

The created virtual environment contains 
modules (files with the extension «py»). They 
are used to manage project dependencies, create 
an isolated development environment, and to 
work with different versions of packages and 
libraries.

The project consists of three stages:
1. Data generation.
2. Data validation.
3. Model learning.

Data Generation
The statistical data were imported into the 

project’s virtual environment directory in the csv 
file format. This extension is used for convenience 
of storing data (in text form) so that it is easy to 
process and transfer it [18].

To study the influence of weather, natural 
conditions and road geometry on the intensity of 
road traffic flow, 562612 hours with different 
characteristics from 107 reference points were 
collected and grouped. Preliminary processing 
of the entire array of data showed poor results 
for the influence of independent features on the 
dependent one. Explaining this by the insufficient 
list of analysed factors, it was decided to analyse 
each reference point separately, with the prospect 
of creating not one, but 107 models for 
forecasting. Thus, the influence of unaccounted 
static independent variables was to be excluded 

[19; 20].
To achieve the above goal, considering the 

rules for processing by a  neural network of 
a single file with all the data, it was necessary to 
form 107 files with the csv extension. In each of 
them, the data of a specific boundary.

To sort the general population by reference 
points with subsequent formation of files, the 
explode_start.py algorithm (Pic. 2), located in 
the root of the application, was created and 
launched.

In the explode_start module, the operating 
system functions were imported – ​ OS (import 
os) to ensure reading of files and the pandas 
library (import pandas as pd) to work with the 
data (Pic. 2). Additionally, an alias is applied to 
the library (renaming for easy access to the 
library), simplifying its name to pd.

In the fourth line, the program «reads» the 
file, the a  semicolon separator type was 
additionally specified.

In the fifth line, grouping is done by reference 
points.

In the sixth line, the program receives a list 
of reference points.

From the seventh line, the program cyclically 
alternately searches reference points and saves 
them in separate files, writing their number in 
the file name.

After executing the explode_start script and 
following the dynamic route ‘/output/r/’ (Pic. 2), 
files with data appear in the r directory (Pic. 3).

Data Preparation
After forming files with reference points, to 

eliminate errors during training, it is necessary 
to prepare the data, which will include checking 
for missing values in a  position (warn the 
operator, replace with 0, delete the entire line, 
etc.) and for the range of acceptable values, 
validation, etc. [21].

Pic. 2. Explode_start module. Sorting data by reference points and generating files [performed by the authors].
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To prepare the data, the validate_start 
algorithm was created and launched (Pic. 4).

The command «from app.validator import 
start as validate» imports the validation function 
«start» from the «validator» module of the «app» 
directory (Pic. 5).

In the validate_start algorithm cycle (Pic. 
4), the program gets a list of files from the /
output/r directory, going through them one by 

one. In the sixth line, the file name is separated 
by a period separator. As a result, an array of 
two parts is obtained. The first part (zero) is 
the file name, the second part (one) is the 
extension. Only the file name is considered in 
this function.

In the eighth line, using the start function 
(renamed to predict), validation is launched from 
the validator module (Pic. 5).

Pic. 4. Validate_start script [performed by the authors].

Pic. 3. Generated files with reference points in the project’s virtual environment directory [performed by the authors].
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Pic. 5. The start validation function from the validator module in the app directory [performed by the authors].

Pic. 6. Method names_input of the module _init_ [performed by the authors].

When executing the algorithm of the validator 
module program, auxiliary functions and variables 
are imported from the columns directory (app/
domain/columns) and the logger module is 
imported from the helpers directory (app/domain/ 

helpers). The task of the logger module is to change 
the font colour of the message that is output to the 
console (the design details are not important for the 
purpose of the work, so the details of the algorithm 
of this module are omitted).
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Considering that columns is a directory and 
not an executable file, the _init_ module is 
initialised in it by default. Accordingly, line 2 
(Pic. 5)  imports the names_input and names_
output methods from the _init_ module into the 
validator module – ​this is encapsulation, one of 
the principles of object-oriented programming, 
hiding the implementation to ensure the 
possibility of introducing additional logic into 
the formation of names_input and names_output 
(a list of column names of input parameters that 
are used in the data header) (Pics. 6, 7).

The validators method in the _init_ module 
returns a list of all validators, which are within 
two constants that are data arrays (Pic. 8):

1. _columns_inputs + _columns_outputs;
2. _validators_input + _validators_output.
After data processing, these arrays are 

concatenated and a correspondence is established 
between the column name and its validator. This 

means that the order of the validator in the 
constant – ​validators_input must correspond to 
the order of its column.

Each column from the lists of columns (_
columns_inputs, _columns_outputs, _validators_
input, _validators_output) is described in the 
columns directory and processed in the _init_ 
module using the methods shown in Pic. 4. To 
ensure this, the modules and methods for data 
validation were imported into the _init_ module 
using the command from app.domain.columns:

1. Day of the week:
– week_day import validate as week_

validator;
– week_day import COLUMN_NAME as 

WEEK_COLUMN_NAME.
2. Time of the day:
– time import COLUMN_NAME as TIME_

COLUMN_NAME;
– time import validate as time_validator

Pic. 8. List of column names of input and output parameters in the _init_ module [performed by the authors].

Pic. 7. List of column names of input and output parameters in the _init_ module [performed by the authors].
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3. Road traffic intensity:
– intensity import COLUMN_NAME as 

INTENSIVE_COLUMN_NAME;
– intensity import validate as intensive_

validator.
4. Air temperature:
– t_air import COLUMN_NAME as T_AIR_

COLUMN_NAME;
– t_air import validate as t_air_validator.
5. Soil temperature:
– t_soil import COLUMN_NAME as T_

SOIL_COLUMN_NAME;
– t_soil import validate as t_soil_validator.
6. Dew point temperature:
– t_dew import COLUMN_NAME as T_

DEW_COLUMN_NAME;
– t_dew import validate as t_dew_validator.
7. Partial pressure of water vapor (ps), Pa:
– pressure import COLUMN_NAME as 

PRESSURE_COLUMN_NAME;
– columns.pressure import validate as 

pressure_validator.
8. Relative humidity (ϕ), %:
– f_percent import COLUMN_NAME as 

F_PERCENT_COLUMN_NAME;
– f_percent import validate as f_percent_

validator.
9. Visibility, cipher (VV):
– from app.domain.columns.visibility_cipher 

import COLUMN_NAME as VISIBILITY_
CIPHER_COLUMN_NAME;

– visibility_cipher import validate as 
visibility_cipher_validator.

10. Saturation deficit (d), g/m³:
– columns.saturation_deficit  import 

COLUMN_NAME as  SATURATION_
DEFICIT_COLUMN_NAME;

– saturation_deficit import validate as 
saturation_deficit_validator.

11. Atmospheric pressure at the station level 
(P station), g.Pa

– p_level_station import COLUMN_NAME 
as P_LEVEL_STARION_COLUMN_NAME;

– p_level_station import validate as p_level_
station_validator.

12. Atmospheric pressure at the sea level 
(P sea), g.Pa:

– p_sea_level import COLUMN_NAME as 
P_SEA_LEVEL_COLUMN_NAME;

– p_sea_level import validate as p_sea_level_
validator.

13. Weather, cipher (ww):
– weather_code_ww import COLUMN_

N A M E  a s  W E AT H E R _ C O D E _ W W _
COLUMN_NAME;

– weather_code_ww import validate as 
weather_code_ww_validator.

14. Wind direction, degrees:
– direction_wind import COLUMN_NAME 

as DIRECTION_WIND_COLUMN_NAME;
– direction_wind import validate as direction_

wind_validator.
15. Wind speed, m/s:
– wind_speed import COLUMN_NAME as 

WIND_SPEED_COLUMN_NAME;
– wind_speed import validate as wind_

speed_validator.
16. Precipitation, mm:
– precipitation import COLUMN_NAME as 

PRECIPITATION_COLUMN_NAME;
– precip i ta t ion  impor t  va l ida te  as 

precipitation_validator.
17. Natural light:
– daylight import COLUMN_NAME as 

DAYLIGHT_COLUMN_NAME;
– daylight import validate as daylight_

validator.
In the ninth line, the start function of the 

validator module of the app/domain/columns 
directory reads the csv file (Pic. 5). The path to 
the file is formed according to the template line 
(os.getcwd() + ‘/output/r/’).

The filename variable is the name of the file, 
it is passed as an argument to this function, and 
need_train is an indicator that validation is 
performed at the model training level or at the 

Pic. 9. Structure of the error control module of the f_percent module [performed by the authors].
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forecasting level (Pic. 5). The fact is that 
validation is used both at the model training stage 
and at the forecasting stage.

Using validators in the start function of the 
validator module (Pic. 5), new verified data is 
formed, which is written to the directory  – ​ /
utput/validated.

The structure of the module itself, reflecting 
information about the column using the example 
of the variable – ​«Relative air humidity» is shown 
in Pic. 9.

Line 2 imports helpers, which denotes custom 
project functions for checking the types of the 
csv table column value.

The constant COLUMN_NAME in the fourth 
line binds the name of the column header. In this 
case, it is «humidity».

From the fifth to the eighth lines, the validate 
function checks the values for compliance with 
the established requirements, otherwise the 
program reports an error. In this specific example 
(Pic. 9), the values in the humidity column should 
not be lower than 100 or higher than 110. Other 
values will be considered an error.

The rules for data control in the Python 
programming language for csv file columns at 
the preparation stage are given below.

Natural light, daylight module
import math 
import app.domain.helpers.utils as f 
COLUMN_NAME = ‘daylight’ #Natural light 
def validate(value): 
if 0.5 < value < 1: 
value = float(f.toFixed(value, 2)) 
types.in_range(value, [0, 0.5, 0.85, 1],  
«Daylight_Validator») 
return value

Wind direction, degrees, direction_wind 
module
import portion as P 
from app.domain.helpers import types COLUMN_NAME 
= ‘wind_direction’ #Wind direction, degrees 
def validate(value): 
r1 = P.closed(0, 360) 
types.is_float(value, «direction_windValidator») 
types.in_range(value, r1, «direction_windValidator») 
return value

Relative humidity, f_percent module
import portion as P 
from app.domain.helpers import types 
COLUMN_NAME = ‘humidity’ # Relative humidity (ϕ), 
%; 
def validate(value): 
r1 = P.closed(–100, 110) 
types.is_float(value, «FPercentValidator») 
types.in_range(value, r1, «FPercentValidator») 
return value

Traffic flow intensity, intensity module
import portion as P 
from app.domain.helpers import types 
COLUMN_NAME = ‘intensity’ # Intensity 
def validate(value): 
r1 = P.closed(0, float(‘inf’)) 
types.is_int(value, «IntensivityValidator») 
types.in_range(value, r1, «IntensivityValidator») 
return value

Atmospheric pressure at the station level, 
p_level_station module
import portion as P 
from app.domain.helpers import types 
COLUMN_NAME = ‘pressure_station’ # Atmospheric 
pressure at the station level (P station), g.Pa 
def validate(value): 
r1 = P.closed(900, 1100) 
types.is_float(value, «p_level_stationValidator») 
types.in_range(value, r1, «p_level_stationValidator») 
return value

Atmospheric pressure at the sea level, p_
sea_level module
import portion as P 
from app.domain.helpers import types 
COLUMN_NAME = ‘pressure_sea’ # Atmospheric 
pressure at the sea level (P sea), g.Pa 
def validate(value): 
r1 = P.closed(900, 1100) 
types.is_float(value, «p_sea_levelValidator») 
types.in_range(value, r1, «p_sea_leveValidator») 
return value

Precipitation, precipitation module
import portion as P 
from app.domain.helpers import types 
import math 
COLUMN_NAME = ‘precipitation’ # Precipitation, mm 
def validate(value): 
if math.isnan(value): 
value = float(0) 
r1 = P.closed(0, 100) 
types.is_float(value, «Precipitation_Validator») 
types.in_range(value, r1, «Precipitation_Validator») 
return value

Partial pressure of water vapour, pressure 
module
import portion as P 
from app.domain.helpers import types 
COLUMN_NAME = ‘partial_pressure’ # Partial pressure 
of water vapor (ps), Pa 
def validate(value): 
r1 = P.closed(0, float(‘inf’)) 
types.is_float(value, «PressureValidator») 
types.in_range(value, r1, «PressureValidator») 
return value

Saturation deficit, saturation_deficit module
import portion as P 
from app.domain.helpers import types 
COLUMN_NAME = ‘saturation_deficit’ # Saturation 
deficit (d), g/m³ 
def validate(value): 
r1 = P.closed(0, 40) 
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types.is_float(value, «SaturationValidator») 
types.in_range(value, r1, «SaturationValidator») 
return value

Air temperature (t air), t_air module
import portion as P 
from app.domain.helpers import types 
COLUMN_NAME = ‘t_air’ #Air temperature (t air), С° 
def validate(value): 
r1 = P.closed(–100, 100) 
types.is_float(value, «TAirValidator») 
types.in_range(value, r1, «TAirValidator») 
return value

Dew point (DP) temperature, t_dew module
import portion as P 
from app.domain.helpers import types 
COLUMN_NAME = ‘t_dew_point’ # Dew point 
temperature (DP), С° 
def validate(value): 
r1 = P.closed(–100, 100) 
types.is_float(value, «TDewValidator») 
types.in_range(value, r1, «TDewValidator») 
return value

Soil temperature (t soil), t_soil module
import portion as P 
from app.domain.helpers import types 
COLUMN_NAME = ‘t_soil’ # Soil temperature (t soil), С° 
def validate(value): 
r1 = P.closed(–100, 100) 
types.is_float(value, «TSoilValidator») 
types.in_range(value, r1, «TSoilValidator») 
return value

Time of the day, time module
import portion as P 
from app.domain.helpers import types 
COLUMN_NAME = ‘day_time’ # Time of the day 
def validate(value): 
r1 = P.closed(0, 23) 
types.is_int(value, «TimeValidator») 
types.in_range(value, r1, «TimeValidator») 
return value

Visibility, cipher (VV), visibility_cipher 
module
from app.domain.helpers import types 
import math 
COLUMN_NAME = ‘visibility_VV’ # Visibility, cipher (VV); 

def validate(value): 
if math.isnan(value): 
value = 0 
types.is_int(int(value), «VisibilityValidator») 
types.in_range(value, [90, 91, 92, 93, 94, 95, 96, 97, 98, 
99, 0], «VisibilityValidator») 
return value

Weather, cipher (ww), weather_code_ww 
module
from app.domain.helpers import types 
import math 
COLUMN_NAME = ‘weather_WW’ # Weather, cipher 
(ww) 
def validate(value): 
if math.isnan(value): 
value = 0 
types.is_int(int(value), «Weather_code_ww_Validator») 
types.in_range(value, [0, 1, 2, 3, … 99], «Weather_code_
ww_Validator») 
return value

Day of the week, week_day module
import portion as P 
from app.domain.helpers import types 
COLUMN_NAME = ‘week_day’ # Day of the week 
def validate(value): 
r1 = P.closed(1, 7) 
types.is_int(value, «WeekValidator») 
types.in_range(value, r1, «WeekValidator») 
return value

Wind speed, wind_speed module
import portion as P 
from app.domain.helpers import types 
import math 
COLUMN_NAME = ‘wind_speed’ # Wind speed, m/s 
def validate(value): 
if math.isnan(value): 
value = float(0) 
r1 = P.closed(0, 40) 
types.is_float(value, «Wind_speedValidator») 
types.in_range(value, r1, «Wind_speedValidator») 
return value

Outliers Removal Using the Isolation Forest 
Method

Looking ahead, it should be noted that the 
decision to clean the data from outliers was 

Table 1
Fragment of data from model assessment using test loss and test acc methods before and 

after excluding anomalies from the traffic flow intensity indicator [compiled by the authors]
Reference point With anomalies Without anomalies

test loss test acc test loss test acc
1011 0.21 0.44 0.36 0.69
1021 0.26 0.38 0.30 0.67
1031 0.25 0.31 0.62 0.52
111 0.52 0.26 0.89 0.43
1111 0.42 0.24 0.74 0.20
1121 0.25 0.35 0.33 0.65
1131 0.23 0.40 0.32 0.62
1141 0.25 0.47 0.40 0.60
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a consequence of the low accuracy of the test 
data forecast (Table 1).

Test loss and test acc are metrics used to 
evaluate the performance of a machine learning 
model on test data.

Test loss is a  measure of the error, or 
difference between the predicted values and the 
actual values on the test data. Test loss is usually 
calculated using some loss function (such as 
Mean Squared Error or Cross-Entropy Loss) and 
shows how well the model does at predicting the 
correct values on the test data. The lower is the 
test loss, the better is the model’s performance.

Test accuracy is the percentage of correct 
predictions by the model on the test data. It shows 
how well the model classifies the correct classes 
on the test data. Test accuracy is calculated by 
comparing the predicted values with the actual 
class labels and calculating the proportion of 
correct answers. The higher is the test accuracy, 
the better is the model’s performance.

Both test loss and test accuracy are used to 
assess the performance of a model on data that 
was not used for learning. They make it possible 
to check how well the model generalises 
knowledge and is able to predict the correct 
values on new data.

All factors were checked for anomalies, but 
only the traffic flow intensity showed significant 
contamination of the data with random outliers. 
These are consequences of road traffic accidents, 
maintenance of road itself or of adjacent structures 
with temporary restraints of traffic, either of 
a breakdown of the recording device, etc.

The Isolation Forest method turned to be the 
best choice for finding anomalies because the 
traffic flow metric does not have a clearly defined 
normal distribution.

Isolation Forest is a  machine learning 
algorithm for detecting anomalies in data. Unlike 
other algorithms, such as clustering or density, 
Isolation Forest uses decision trees to find 
anomalies.

The basic idea behind Isolation Forest is that 
anomalies in data tend to have fewer connections 
and shorter distances to other features. The 
algorithm builds multiple decision trees by 
randomly selecting features and splitting the data 
at each step. It then estimates how quickly an 
anomaly can be isolated in these trees.

When learning an isolation forest:
1. The maximum tree depth and maximum 

number of splits are specified.
2. The data is split into random subsamples 

and a decision tree is built for each subsample.
3. Each decision tree splits the data into two 

parts by choosing a random feature and a random 
split.

4. Steps 2–3 are repeated until the maximum 
depth or number of splits is reached.

5. At the end of learning and for a new feature, 
the validation score is used to determine anomaly.

When using isolation forest for anomaly 
detection:

1. A «path» in the tree is computed for each 
feature, representing the number of splits needed 
to isolate the feature.

2. The average path length is computed for 
all features and used to determine anomalies. 
Features with shorter paths are usually considered 
more anomalous.

Advantages of using isolation forest:
1. It can be well scaled to handle large 

amounts of data.
2. It is powerful and efficient in detecting 

anomalies.

Pic. 10. Cleaning traffic flow data using the isolation forest method [performed by the authors].
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3. It does not require preliminary data 
preparation, as it is insensitive to outliers and 
multicollinearity.

The existing method of implementing the 
random forest method in the Python programming 
language requires certain versions of special 
libraries of the program itself, which are not 
compatible with this project, so an additional 
virtual environment with the key module clean_
start was created in the PyCharm development 
environment (Pic. 10).

When the clean_start module is launched, the 
isolation forest method of the sklearn library 
ensemble add-in is imported in the third line. 
A cyclic function is launched for each reference 
point from the /output/validated directory and the 
cleaner function is processed (Pic. 10), where:

– Data is loaded in the sixth line.
– The first index column is deleted in the 

seventh line.
– The model is formed, and parameters are set 

in the tenth line.
– Data on traffic flow intensity is transferred 

to the model in the eleventh line.
– Anomalies are identified and marked in lines 

12–13. Two additional columns are created. One 
reflects the scores of values (scores_intensity), the 
second (anomaly_intensity) marks all anomalous 
values with the number «-1» and normal values 
with «1» according to the scores.

At the end of each cycle, the transformed data 
is written back to the /output/validated directory.

To eliminate anomalies, before learning, the 
data was sorted by the value «1» of the column 
anomaly_intensity, using the command data_
frame = data_frame.loc[data_frame[‘anomaly_
intensity’] == 1].

CONCLUSION
Preliminary data transformation in order to 

prepare it for processing by machine learning 
methods is an important component of achieving 
the accuracy of the obtained results, objective 
comparison of features and identification of 
dependencies.

The use of information and analytical 
resources of large cities is becoming promising 
for the analysis of road traffic flow intensity. For 
this purpose, the study has used the algorithmic 
tools based on the obtained theoretical results 
and software prototypes of their main components, 
methods and algorithms for predictive analytics 
of the Python programming language, and the 
PyCharm development environment.

Further implementation of the research 
results is aimed at building a  deep learning 
neural network, model learning and forecasting, 
therefore, pre-processing is an important 
component of the program logic, and allows 
improving data quality, simplifying the model 
and making learning more effective.

Due to the high dynamism of road traffic 
flow intensity and a large number of unstable 
parameters  affect ing i t ,  unpredictable 
(anomalous) values are observed, which include 
accidents, construction work, failures of 
recording equipment, etc. To exclude them, 
preliminary data processing was followed by 
processing the data by the Isolation Forest 
method.

The Isolation Forest was used to find 
anomalies by constructing an ensemble of 
isolated trees, in each of which partitions were 
randomly selected by random features and data 
points for constructing the tree. Then, anomalies 
were eliminated by reducing the height of 
anomalous points in the tree.

This work became a platform for training 
models on the dependence of traffic flow 
intensity on weather and climate characteristics 
and road network factors using the deep learning 
method. Table 1 demonstrates the quality of the 
neural network model before and after data 
processing, including with the Isolation Forest 
method. The research results have been tested 
and scientifically weighed, indicating an 
increase in the quality of the predictive model 
on test data.

The work is deemed to be relevant from 
theoretical and practical points of view, and 
already has application examples that will be 
published in future works.
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