
156
TH

EO
RY Traffic Flow Intensity Research

Based on Deep Learning

ORIGINAL ARTICLE
DOI: https://doi.org/10.30932/1992-3252-2024-22-2-2

World of Transport and Transportation, 2024,
Vol. 22, Iss. 2 (111), pp. 156–168

Igor N. Pugachev1, Nikolay G. Sheshera2, Denis E. Grigorov3

1 Khabarovsk Federal Research Centre of the Far Eastern Branch of the Russian Academy of Sciences, Khabarovsk,
Russia.
2, 3 Far Eastern Law Institute of the Ministry of Internal Affairs of the Russian Federation, Khabarovsk, Russia.
1 ORCID 0000-0003-0345-4350; Web of Science Researcher ID: ABY-8399-2022; Scopus Author ID: 56386223400;
Russian Science Citation Index SPIN-code: 1856-1556; Russian Science Citation Index Author ID: 416392.
2 ORCID 0009-0006-3302-5572; Web of Science Researcher ID: LCI-5197-2024; Scopus Author ID: 57209470019;
Russian Science Citation Index SPIN-code: 9869-8822; Russian Science Citation Index Author ID: 1033608.
3 ORCID 0009-0005-4049-9488; Scopus Author ID: 57209470019; Russian Science Citation Index SPIN-code: 6146-
4152; Russian Science Citation Index Author ID: 1084181.
 2 kolyaka239@mail.ru.

Igor N. PUGACHEV Nikolay G. SHESHERA Denis E. GRIGOROV

In a harmonious transport system, traffic flows are rationally
distributed depending on the capacity of roads and streets to
ensure transit capacity, considering the traffic light control
systems. At the same time, due attention is not paid to changes
in weather and natural conditions, which in turn significantly
adjusts driving regimes, taking them out of a stable, predictable
state. Modern software and hardware systems and information
resources of large cities have a wide range of recorded indicators
that affect distribution of traffic flows. Their automated processing
using algorithmic machine learning tools has formed a
comprehensive understanding of the patterns of change in the
traffic intensity indicator, which is a new stage of improving road
traffic safety, striving for zero mortality.

The scientific novelty of the study refers to the techniques and
approaches to studying the weather and climate characteristics and
factors of the street-and-road network, their preliminary processing
using modern statistical and logical methods of normalisation and
eliminating random outliers.

The deep learning method opens wide opportunities for
analysing the intensity of the road traffic flow. By processing large
amounts of data, such algorithms are able to identify complex
patterns and relationships, which improves traffic forecasting and
optimises traffic management. For correct operation of the neural
network for training the model and studying the road traffic flow
intensity, a set of software tools for preliminary data processing has
been developed, which includes a step-by-step analysis of array
structures with subsequent replacement of values or elimination of
errors.

Preliminary data cleaning in accordance with the syntax of the
program logic and the rules of statistical analysis is followed by
application of a method for searching and eliminating anomalies
was used, i.e. the isolation forest method.

This research direction was part of a large study on road traffic
flow intensity, and the described results are a set of solutions based
on the system interaction of software and methods of statistical and
analytical transformations developed by the authors.

Keywords: transport systems, traffic flow intensity, deep learning method, weather and natural conditions, neural networks, model.

For citation: Pugachev, I. N., Sheshera, N. G., Grigorov, D. E. Traffic Flow Intensity Research Based on Deep Learning. World of
Transport and Transportation, 2024, Vol. 22, Iss. 2 (111), pp. 156–168. DOI: https://doi.org/10.30932/1992-3252-2024-22-2-2.

The original text of the article in Russian is published in the first part of the issue.
Текст статьи на русском языке публикуется в первой части данного выпуска.

ABSTRACT

© Pugachev, I. N., Sheshera, N. G., Grigorov, D. E., 2024•

157

INTRODUCTION
Modern trends in development of information

technology offer a wide range of data analysis
capabilities. The presence of large number of
features make it possible to form various patterns
of transport environment distribution and
consider weather conditions in each respective
environment 1 [1].

Artificial intelligence (AI) is one of the
promising areas in modern science and
technology. In recent decades, systems have been
created that are capable with the use of AI to
perform complex tasks requiring intellectual
skills [2; 3].

Modern AI is able to analyse the environment
and interact with it, interpret and process data,
learn and adapt itself while evolving. That is why
the main task of the work is to prepare data for
an objective assessment of the phenomenon
under study.

AI is used in many areas, including computer
vision, natural language processing, robotics,
autonomous vehicles, medicine, financial
analytics, etc. In each of these areas, AI makes
it possible to automate processes, improve
forecasts and make decisions based on large
amounts of data and analysis of complex
models.

The principles of AI are based on various
approaches and methods for creating computer
systems that can analyse data, learn and make
decisions based on the information received.
Machine learning methods, neural networks and
deep learning are the main tools in achieving this
goal.

In this paper, to predict the intensity of road
traffic flow, the properties of the street-and-road
network (SRN) are considered to be a classifier
for categorising transport facilities, and weather
conditions are assumed to be independent
variables by which changes in the dependent will
be predicted [4].

The work contains complex programming
elements. The initial operations are explained,
and for the rest of this kind, to reduce duplicating
information, comments are omitted.

The working window of the PyCharm
development environment has numbered lines.
The commands are explained by referring to the
line number of the provided screenshot of the
workspace.
1 ODM 218.4.005–2010. Industry road methodological
document. Recommendations for ensuring road traffic safety
on motorways.

RESULTS
Backpropagation Neural Network
Architecture

To confirm the influence of weather
condit ions, road geometry and traff ic
characteristics on traffic flow intensity, as well
as to test the predict ive capabil i t ies ,
a Backpropagation neural network was used 2.

A Backpropagation neural network is a type
of neural network that uses the backward
propagation of errors algorithm for training. The
basic idea is that the network goes through two
stages: forward propagation, where the input data
is transferred from the input layer through the
hidden layers to the output layer, and
backpropagation, where the network weights are
adjusted [5; 6].

The backward propagation of errors process
begins with calculating the error at the output
layer. This error is then propagated back through
the layers of the network, proportional to the
weights of the connections between neurons, and
the error at each layer is calculated [8; 9]. Next,
the neuron weights are adjusted in the direction
opposite to the error gradient to reduce the error
on subsequent passes through the network.

For the backpropagation algorithm, it is
necessary to define the error function. It is
measured by the difference between the expected
values and the predicted ones. The mean squared
error is the most common for regression problems
and cross entropy for classification problems
[10].

During training, the network goes through
several epochs, where each epoch is one pass
through the entire training set, i. e., all training
examples [11; 12]. The network weights are
adjusted in such a way as to minimise the error
relative to the training data.

It was decided to form the architecture of the
neural network in the Python programming
language, using the Keras add-on of the low-level
TensorFlow library [13].

Keras was developed to facilitate and speed
up the process of developing deep learning
models. It provides high-level abstractions for
building neural networks, hiding most of the
complexity and details of low-level libraries from
the developer.

The architecture of a backpropagation neural
network consists of several main components.
2 Operation of motorways: Study guide. Comp. by:
I. N. Pugachev, A. V. Kamenchukov, N. S. Nesterova.
Khabarovsk, Publishing house of FESTU, 2022, 168 p.

• World of Transport and Transportation, 2024, Vol. 22, Iss. 2 (111), pp. 156–168

Pugachev, Igor N., Sheshera, Nikolay G., Grigorov, Denis E. Traffic Flow Intensity Research Based
on Deep Learning

158

1. Input layer receives as input data that is
fed to the input of the neural network. In this
layer, the number of neurons corresponds to the
dimensionality of the incoming data.

2. Hidden layers perform intermediate
computational operations. Depending on the
specific task or architecture of the neural
network, the number of hidden layers and
neurons in them changes. Each neuron in the
hidden layer takes the activation values of the
previous layer as input and calculates its
activation value based on the weights that
connect it to the previous layer.

3. Output layer performs a forecast. The number
of neurons in the output layer depends on the
classification or regression problem. For example, if
a binary classification problem is being solved, then
the output layer will have one neuron responsible for
the probability of belonging to a class.

4. Network activation function is used for
nonlinear transformation of the input data. The
most common activation functions are sigmoid,
tanh and ReLU.

5. Backward propagation of errors is an
algorithm for updating the weights in a neural

network. It calculates the gradient of the error
function over all the weights and uses it to
update the weights to minimise the prediction
error.

6. Optimiser applies an optimisation
algorithm to update the weights in a neural
network based on the error gradient. Some
popular optimisers include stochastic gradient
descent (SGD), Adam, and RMSprop.

7. Loss function determines how well the
neural network performs on the task at hand. It
calculates the difference between the predicted
values and the true values and is used in
backpropagation to calculate the gradient.

The main components of the backpropagation
neural network architecture can be changed and
modified depending on the specific task and
requirements [14; 15].

The block diagram of the neural network is
shown in Pic. 1.

Initially, the neural network structure was
based on data analysis without preliminary
processing and validation [16]. Testing the model
after training showed the ineffectiveness of the
forecast. This is due to the large number of

Pic. 1. Block diagram of a backpropagation neural network [performed by the authors].

4. Network activation function is used for nonlinear transformation of the

input data. The most common activation functions are sigmoid, tanh and ReLU.

5. Backward propagation of errors is an algorithm for updating the weights

in a neural network. It calculates the gradient of the error function over all the

weights and uses it to update the weights to minimise the prediction error.

6. Optimiser applies an optimisation algorithm to update the weights in a

neural network based on the error gradient. Some popular optimisers include

stochastic gradient descent (SGD), Adam, and RMSprop.

7. Loss function determines how well the neural network performs on the

task at hand. It calculates the difference between the predicted values and the true

values and is used in backpropagation to calculate the gradient.

The main components of the backpropagation neural network architecture can

be changed and modified depending on the specific task and requirements [14; 15].

The block diagram of the neural network is shown in Pic. 1.

Pre-normalisation of data

The weights of the input neurons in
the layer are initialised

Application of error function

Network learning

Reached the set number
of epochs

Model saving

Model testing

Yes

Loading data

Does the model exist? No

Creating Sequential

No

Loading the model

Forecasting

Writing to a file and saving

Saving test result in a file

Start

End

End

Yes

• World of Transport and Transportation, 2024, Vol. 22, Iss. 2 (111), pp. 156–168

Pugachev, Igor N., Sheshera, Nikolay G., Grigorov, Denis E. Traffic Flow Intensity Research Based
on Deep Learning

159

incoming neurons. Therefore, it was decided to
group quantitative features. As a result, it was
necessary to change the approaches to creating
a neural network [17].

To implement the program according to the
above algorithm, a virtual environment was
created in the PyCharm integrated development
environment. This had to be done primarily for
more convenient management of project
dependencies, and to make the development
process more convenient and focused.

The created virtual environment contains
modules (files with the extension «py»). They
are used to manage project dependencies, create
an isolated development environment, and to
work with different versions of packages and
libraries.

The project consists of three stages:
1. Data generation.
2. Data validation.
3. Model learning.

Data Generation
The statistical data were imported into the

project’s virtual environment directory in the csv
file format. This extension is used for convenience
of storing data (in text form) so that it is easy to
process and transfer it [18].

To study the influence of weather, natural
conditions and road geometry on the intensity of
road traffic flow, 562612 hours with different
characteristics from 107 reference points were
collected and grouped. Preliminary processing
of the entire array of data showed poor results
for the influence of independent features on the
dependent one. Explaining this by the insufficient
list of analysed factors, it was decided to analyse
each reference point separately, with the prospect
of creating not one, but 107 models for
forecasting. Thus, the influence of unaccounted
static independent variables was to be excluded

[19; 20].
To achieve the above goal, considering the

rules for processing by a neural network of
a single file with all the data, it was necessary to
form 107 files with the csv extension. In each of
them, the data of a specific boundary.

To sort the general population by reference
points with subsequent formation of files, the
explode_start.py algorithm (Pic. 2), located in
the root of the application, was created and
launched.

In the explode_start module, the operating
system functions were imported – ​ OS (import
os) to ensure reading of files and the pandas
library (import pandas as pd) to work with the
data (Pic. 2). Additionally, an alias is applied to
the library (renaming for easy access to the
library), simplifying its name to pd.

In the fourth line, the program «reads» the
file, the a semicolon separator type was
additionally specified.

In the fifth line, grouping is done by reference
points.

In the sixth line, the program receives a list
of reference points.

From the seventh line, the program cyclically
alternately searches reference points and saves
them in separate files, writing their number in
the file name.

After executing the explode_start script and
following the dynamic route ‘/output/r/’ (Pic. 2),
files with data appear in the r directory (Pic. 3).

Data Preparation
After forming files with reference points, to

eliminate errors during training, it is necessary
to prepare the data, which will include checking
for missing values in a position (warn the
operator, replace with 0, delete the entire line,
etc.) and for the range of acceptable values,
validation, etc. [21].

Pic. 2. Explode_start module. Sorting data by reference points and generating files [performed by the authors].

• World of Transport and Transportation, 2024, Vol. 22, Iss. 2 (111), pp. 156–168

Pugachev, Igor N., Sheshera, Nikolay G., Grigorov, Denis E. Traffic Flow Intensity Research Based
on Deep Learning

160

To prepare the data, the validate_start
algorithm was created and launched (Pic. 4).

The command «from app.validator import
start as validate» imports the validation function
«start» from the «validator» module of the «app»
directory (Pic. 5).

In the validate_start algorithm cycle (Pic.
4), the program gets a list of files from the /
output/r directory, going through them one by

one. In the sixth line, the file name is separated
by a period separator. As a result, an array of
two parts is obtained. The first part (zero) is
the file name, the second part (one) is the
extension. Only the file name is considered in
this function.

In the eighth line, using the start function
(renamed to predict), validation is launched from
the validator module (Pic. 5).

Pic. 4. Validate_start script [performed by the authors].

Pic. 3. Generated files with reference points in the project’s virtual environment directory [performed by the authors].

• World of Transport and Transportation, 2024, Vol. 22, Iss. 2 (111), pp. 156–168

Pugachev, Igor N., Sheshera, Nikolay G., Grigorov, Denis E. Traffic Flow Intensity Research Based
on Deep Learning

161

Pic. 5. The start validation function from the validator module in the app directory [performed by the authors].

Pic. 6. Method names_input of the module _init_ [performed by the authors].

When executing the algorithm of the validator
module program, auxiliary functions and variables
are imported from the columns directory (app/
domain/columns) and the logger module is
imported from the helpers directory (app/domain/

helpers). The task of the logger module is to change
the font colour of the message that is output to the
console (the design details are not important for the
purpose of the work, so the details of the algorithm
of this module are omitted).

• World of Transport and Transportation, 2024, Vol. 22, Iss. 2 (111), pp. 156–168

Pugachev, Igor N., Sheshera, Nikolay G., Grigorov, Denis E. Traffic Flow Intensity Research Based
on Deep Learning

162

Considering that columns is a directory and
not an executable file, the _init_ module is
initialised in it by default. Accordingly, line 2
(Pic. 5) imports the names_input and names_
output methods from the _init_ module into the
validator module – ​this is encapsulation, one of
the principles of object-oriented programming,
hiding the implementation to ensure the
possibility of introducing additional logic into
the formation of names_input and names_output
(a list of column names of input parameters that
are used in the data header) (Pics. 6, 7).

The validators method in the _init_ module
returns a list of all validators, which are within
two constants that are data arrays (Pic. 8):

1. _columns_inputs + _columns_outputs;
2. _validators_input + _validators_output.
After data processing, these arrays are

concatenated and a correspondence is established
between the column name and its validator. This

means that the order of the validator in the
constant – ​validators_input must correspond to
the order of its column.

Each column from the lists of columns (_
columns_inputs, _columns_outputs, _validators_
input, _validators_output) is described in the
columns directory and processed in the _init_
module using the methods shown in Pic. 4. To
ensure this, the modules and methods for data
validation were imported into the _init_ module
using the command from app.domain.columns:

1. Day of the week:
– week_day import validate as week_

validator;
– week_day import COLUMN_NAME as

WEEK_COLUMN_NAME.
2. Time of the day:
– time import COLUMN_NAME as TIME_

COLUMN_NAME;
– time import validate as time_validator

Pic. 8. List of column names of input and output parameters in the _init_ module [performed by the authors].

Pic. 7. List of column names of input and output parameters in the _init_ module [performed by the authors].

• World of Transport and Transportation, 2024, Vol. 22, Iss. 2 (111), pp. 156–168

Pugachev, Igor N., Sheshera, Nikolay G., Grigorov, Denis E. Traffic Flow Intensity Research Based
on Deep Learning

163

3. Road traffic intensity:
– intensity import COLUMN_NAME as

INTENSIVE_COLUMN_NAME;
– intensity import validate as intensive_

validator.
4. Air temperature:
– t_air import COLUMN_NAME as T_AIR_

COLUMN_NAME;
– t_air import validate as t_air_validator.
5. Soil temperature:
– t_soil import COLUMN_NAME as T_

SOIL_COLUMN_NAME;
– t_soil import validate as t_soil_validator.
6. Dew point temperature:
– t_dew import COLUMN_NAME as T_

DEW_COLUMN_NAME;
– t_dew import validate as t_dew_validator.
7. Partial pressure of water vapor (ps), Pa:
– pressure import COLUMN_NAME as

PRESSURE_COLUMN_NAME;
– columns.pressure import validate as

pressure_validator.
8. Relative humidity (ϕ), %:
– f_percent import COLUMN_NAME as

F_PERCENT_COLUMN_NAME;
– f_percent import validate as f_percent_

validator.
9. Visibility, cipher (VV):
– from app.domain.columns.visibility_cipher

import COLUMN_NAME as VISIBILITY_
CIPHER_COLUMN_NAME;

– visibility_cipher import validate as
visibility_cipher_validator.

10. Saturation deficit (d), g/m³:
– columns.saturation_deficit import

COLUMN_NAME as SATURATION_
DEFICIT_COLUMN_NAME;

– saturation_deficit import validate as
saturation_deficit_validator.

11. Atmospheric pressure at the station level
(P station), g.Pa

– p_level_station import COLUMN_NAME
as P_LEVEL_STARION_COLUMN_NAME;

– p_level_station import validate as p_level_
station_validator.

12. Atmospheric pressure at the sea level
(P sea), g.Pa:

– p_sea_level import COLUMN_NAME as
P_SEA_LEVEL_COLUMN_NAME;

– p_sea_level import validate as p_sea_level_
validator.

13. Weather, cipher (ww):
– weather_code_ww import COLUMN_

N A M E a s W E AT H E R _ C O D E _ W W _
COLUMN_NAME;

– weather_code_ww import validate as
weather_code_ww_validator.

14. Wind direction, degrees:
– direction_wind import COLUMN_NAME

as DIRECTION_WIND_COLUMN_NAME;
– direction_wind import validate as direction_

wind_validator.
15. Wind speed, m/s:
– wind_speed import COLUMN_NAME as

WIND_SPEED_COLUMN_NAME;
– wind_speed import validate as wind_

speed_validator.
16. Precipitation, mm:
– precipitation import COLUMN_NAME as

PRECIPITATION_COLUMN_NAME;
– precip i ta t ion impor t va l ida te as

precipitation_validator.
17. Natural light:
– daylight import COLUMN_NAME as

DAYLIGHT_COLUMN_NAME;
– daylight import validate as daylight_

validator.
In the ninth line, the start function of the

validator module of the app/domain/columns
directory reads the csv file (Pic. 5). The path to
the file is formed according to the template line
(os.getcwd() + ‘/output/r/’).

The filename variable is the name of the file,
it is passed as an argument to this function, and
need_train is an indicator that validation is
performed at the model training level or at the

Pic. 9. Structure of the error control module of the f_percent module [performed by the authors].

• World of Transport and Transportation, 2024, Vol. 22, Iss. 2 (111), pp. 156–168

Pugachev, Igor N., Sheshera, Nikolay G., Grigorov, Denis E. Traffic Flow Intensity Research Based
on Deep Learning

164
forecasting level (Pic. 5). The fact is that
validation is used both at the model training stage
and at the forecasting stage.

Using validators in the start function of the
validator module (Pic. 5), new verified data is
formed, which is written to the directory – ​ /
utput/validated.

The structure of the module itself, reflecting
information about the column using the example
of the variable – ​«Relative air humidity» is shown
in Pic. 9.

Line 2 imports helpers, which denotes custom
project functions for checking the types of the
csv table column value.

The constant COLUMN_NAME in the fourth
line binds the name of the column header. In this
case, it is «humidity».

From the fifth to the eighth lines, the validate
function checks the values for compliance with
the established requirements, otherwise the
program reports an error. In this specific example
(Pic. 9), the values in the humidity column should
not be lower than 100 or higher than 110. Other
values will be considered an error.

The rules for data control in the Python
programming language for csv file columns at
the preparation stage are given below.

Natural light, daylight module
import math
import app.domain.helpers.utils as f
COLUMN_NAME = ‘daylight’ #Natural light
def validate(value):
if 0.5 < value < 1:
value = float(f.toFixed(value, 2))
types.in_range(value, [0, 0.5, 0.85, 1],
«Daylight_Validator»)
return value

Wind direction, degrees, direction_wind
module
import portion as P
from app.domain.helpers import types COLUMN_NAME
= ‘wind_direction’ #Wind direction, degrees
def validate(value):
r1 = P.closed(0, 360)
types.is_float(value, «direction_windValidator»)
types.in_range(value, r1, «direction_windValidator»)
return value

Relative humidity, f_percent module
import portion as P
from app.domain.helpers import types
COLUMN_NAME = ‘humidity’ # Relative humidity (ϕ),
%;
def validate(value):
r1 = P.closed(–100, 110)
types.is_float(value, «FPercentValidator»)
types.in_range(value, r1, «FPercentValidator»)
return value

Traffic flow intensity, intensity module
import portion as P
from app.domain.helpers import types
COLUMN_NAME = ‘intensity’ # Intensity
def validate(value):
r1 = P.closed(0, float(‘inf’))
types.is_int(value, «IntensivityValidator»)
types.in_range(value, r1, «IntensivityValidator»)
return value

Atmospheric pressure at the station level,
p_level_station module
import portion as P
from app.domain.helpers import types
COLUMN_NAME = ‘pressure_station’ # Atmospheric
pressure at the station level (P station), g.Pa
def validate(value):
r1 = P.closed(900, 1100)
types.is_float(value, «p_level_stationValidator»)
types.in_range(value, r1, «p_level_stationValidator»)
return value

Atmospheric pressure at the sea level, p_
sea_level module
import portion as P
from app.domain.helpers import types
COLUMN_NAME = ‘pressure_sea’ # Atmospheric
pressure at the sea level (P sea), g.Pa
def validate(value):
r1 = P.closed(900, 1100)
types.is_float(value, «p_sea_levelValidator»)
types.in_range(value, r1, «p_sea_leveValidator»)
return value

Precipitation, precipitation module
import portion as P
from app.domain.helpers import types
import math
COLUMN_NAME = ‘precipitation’ # Precipitation, mm
def validate(value):
if math.isnan(value):
value = float(0)
r1 = P.closed(0, 100)
types.is_float(value, «Precipitation_Validator»)
types.in_range(value, r1, «Precipitation_Validator»)
return value

Partial pressure of water vapour, pressure
module
import portion as P
from app.domain.helpers import types
COLUMN_NAME = ‘partial_pressure’ # Partial pressure
of water vapor (ps), Pa
def validate(value):
r1 = P.closed(0, float(‘inf’))
types.is_float(value, «PressureValidator»)
types.in_range(value, r1, «PressureValidator»)
return value

Saturation deficit, saturation_deficit module
import portion as P
from app.domain.helpers import types
COLUMN_NAME = ‘saturation_deficit’ # Saturation
deficit (d), g/m³
def validate(value):
r1 = P.closed(0, 40)

• World of Transport and Transportation, 2024, Vol. 22, Iss. 2 (111), pp. 156–168

Pugachev, Igor N., Sheshera, Nikolay G., Grigorov, Denis E. Traffic Flow Intensity Research Based
on Deep Learning

165

types.is_float(value, «SaturationValidator»)
types.in_range(value, r1, «SaturationValidator»)
return value

Air temperature (t air), t_air module
import portion as P
from app.domain.helpers import types
COLUMN_NAME = ‘t_air’ #Air temperature (t air), С°
def validate(value):
r1 = P.closed(–100, 100)
types.is_float(value, «TAirValidator»)
types.in_range(value, r1, «TAirValidator»)
return value

Dew point (DP) temperature, t_dew module
import portion as P
from app.domain.helpers import types
COLUMN_NAME = ‘t_dew_point’ # Dew point
temperature (DP), С°
def validate(value):
r1 = P.closed(–100, 100)
types.is_float(value, «TDewValidator»)
types.in_range(value, r1, «TDewValidator»)
return value

Soil temperature (t soil), t_soil module
import portion as P
from app.domain.helpers import types
COLUMN_NAME = ‘t_soil’ # Soil temperature (t soil), С°
def validate(value):
r1 = P.closed(–100, 100)
types.is_float(value, «TSoilValidator»)
types.in_range(value, r1, «TSoilValidator»)
return value

Time of the day, time module
import portion as P
from app.domain.helpers import types
COLUMN_NAME = ‘day_time’ # Time of the day
def validate(value):
r1 = P.closed(0, 23)
types.is_int(value, «TimeValidator»)
types.in_range(value, r1, «TimeValidator»)
return value

Visibility, cipher (VV), visibility_cipher
module
from app.domain.helpers import types
import math
COLUMN_NAME = ‘visibility_VV’ # Visibility, cipher (VV);

def validate(value):
if math.isnan(value):
value = 0
types.is_int(int(value), «VisibilityValidator»)
types.in_range(value, [90, 91, 92, 93, 94, 95, 96, 97, 98,
99, 0], «VisibilityValidator»)
return value

Weather, cipher (ww), weather_code_ww
module
from app.domain.helpers import types
import math
COLUMN_NAME = ‘weather_WW’ # Weather, cipher
(ww)
def validate(value):
if math.isnan(value):
value = 0
types.is_int(int(value), «Weather_code_ww_Validator»)
types.in_range(value, [0, 1, 2, 3, … 99], «Weather_code_
ww_Validator»)
return value

Day of the week, week_day module
import portion as P
from app.domain.helpers import types
COLUMN_NAME = ‘week_day’ # Day of the week
def validate(value):
r1 = P.closed(1, 7)
types.is_int(value, «WeekValidator»)
types.in_range(value, r1, «WeekValidator»)
return value

Wind speed, wind_speed module
import portion as P
from app.domain.helpers import types
import math
COLUMN_NAME = ‘wind_speed’ # Wind speed, m/s
def validate(value):
if math.isnan(value):
value = float(0)
r1 = P.closed(0, 40)
types.is_float(value, «Wind_speedValidator»)
types.in_range(value, r1, «Wind_speedValidator»)
return value

Outliers Removal Using the Isolation Forest
Method

Looking ahead, it should be noted that the
decision to clean the data from outliers was

Table 1
Fragment of data from model assessment using test loss and test acc methods before and

after excluding anomalies from the traffic flow intensity indicator [compiled by the authors]
Reference point With anomalies Without anomalies

test loss test acc test loss test acc
1011 0.21 0.44 0.36 0.69
1021 0.26 0.38 0.30 0.67
1031 0.25 0.31 0.62 0.52
111 0.52 0.26 0.89 0.43
1111 0.42 0.24 0.74 0.20
1121 0.25 0.35 0.33 0.65
1131 0.23 0.40 0.32 0.62
1141 0.25 0.47 0.40 0.60

• World of Transport and Transportation, 2024, Vol. 22, Iss. 2 (111), pp. 156–168

Pugachev, Igor N., Sheshera, Nikolay G., Grigorov, Denis E. Traffic Flow Intensity Research Based
on Deep Learning

166

a consequence of the low accuracy of the test
data forecast (Table 1).

Test loss and test acc are metrics used to
evaluate the performance of a machine learning
model on test data.

Test loss is a measure of the error, or
difference between the predicted values and the
actual values on the test data. Test loss is usually
calculated using some loss function (such as
Mean Squared Error or Cross-Entropy Loss) and
shows how well the model does at predicting the
correct values on the test data. The lower is the
test loss, the better is the model’s performance.

Test accuracy is the percentage of correct
predictions by the model on the test data. It shows
how well the model classifies the correct classes
on the test data. Test accuracy is calculated by
comparing the predicted values with the actual
class labels and calculating the proportion of
correct answers. The higher is the test accuracy,
the better is the model’s performance.

Both test loss and test accuracy are used to
assess the performance of a model on data that
was not used for learning. They make it possible
to check how well the model generalises
knowledge and is able to predict the correct
values on new data.

All factors were checked for anomalies, but
only the traffic flow intensity showed significant
contamination of the data with random outliers.
These are consequences of road traffic accidents,
maintenance of road itself or of adjacent structures
with temporary restraints of traffic, either of
a breakdown of the recording device, etc.

The Isolation Forest method turned to be the
best choice for finding anomalies because the
traffic flow metric does not have a clearly defined
normal distribution.

Isolation Forest is a machine learning
algorithm for detecting anomalies in data. Unlike
other algorithms, such as clustering or density,
Isolation Forest uses decision trees to find
anomalies.

The basic idea behind Isolation Forest is that
anomalies in data tend to have fewer connections
and shorter distances to other features. The
algorithm builds multiple decision trees by
randomly selecting features and splitting the data
at each step. It then estimates how quickly an
anomaly can be isolated in these trees.

When learning an isolation forest:
1. The maximum tree depth and maximum

number of splits are specified.
2. The data is split into random subsamples

and a decision tree is built for each subsample.
3. Each decision tree splits the data into two

parts by choosing a random feature and a random
split.

4. Steps 2–3 are repeated until the maximum
depth or number of splits is reached.

5. At the end of learning and for a new feature,
the validation score is used to determine anomaly.

When using isolation forest for anomaly
detection:

1. A «path» in the tree is computed for each
feature, representing the number of splits needed
to isolate the feature.

2. The average path length is computed for
all features and used to determine anomalies.
Features with shorter paths are usually considered
more anomalous.

Advantages of using isolation forest:
1. It can be well scaled to handle large

amounts of data.
2. It is powerful and efficient in detecting

anomalies.

Pic. 10. Cleaning traffic flow data using the isolation forest method [performed by the authors].

• World of Transport and Transportation, 2024, Vol. 22, Iss. 2 (111), pp. 156–168

Pugachev, Igor N., Sheshera, Nikolay G., Grigorov, Denis E. Traffic Flow Intensity Research Based
on Deep Learning

167

3. It does not require preliminary data
preparation, as it is insensitive to outliers and
multicollinearity.

The existing method of implementing the
random forest method in the Python programming
language requires certain versions of special
libraries of the program itself, which are not
compatible with this project, so an additional
virtual environment with the key module clean_
start was created in the PyCharm development
environment (Pic. 10).

When the clean_start module is launched, the
isolation forest method of the sklearn library
ensemble add-in is imported in the third line.
A cyclic function is launched for each reference
point from the /output/validated directory and the
cleaner function is processed (Pic. 10), where:

– Data is loaded in the sixth line.
– The first index column is deleted in the

seventh line.
– The model is formed, and parameters are set

in the tenth line.
– Data on traffic flow intensity is transferred

to the model in the eleventh line.
– Anomalies are identified and marked in lines

12–13. Two additional columns are created. One
reflects the scores of values (scores_intensity), the
second (anomaly_intensity) marks all anomalous
values with the number «-1» and normal values
with «1» according to the scores.

At the end of each cycle, the transformed data
is written back to the /output/validated directory.

To eliminate anomalies, before learning, the
data was sorted by the value «1» of the column
anomaly_intensity, using the command data_
frame = data_frame.loc[data_frame[‘anomaly_
intensity’] == 1].

CONCLUSION
Preliminary data transformation in order to

prepare it for processing by machine learning
methods is an important component of achieving
the accuracy of the obtained results, objective
comparison of features and identification of
dependencies.

The use of information and analytical
resources of large cities is becoming promising
for the analysis of road traffic flow intensity. For
this purpose, the study has used the algorithmic
tools based on the obtained theoretical results
and software prototypes of their main components,
methods and algorithms for predictive analytics
of the Python programming language, and the
PyCharm development environment.

Further implementation of the research
results is aimed at building a deep learning
neural network, model learning and forecasting,
therefore, pre-processing is an important
component of the program logic, and allows
improving data quality, simplifying the model
and making learning more effective.

Due to the high dynamism of road traffic
flow intensity and a large number of unstable
parameters affect ing i t , unpredictable
(anomalous) values are observed, which include
accidents, construction work, failures of
recording equipment, etc. To exclude them,
preliminary data processing was followed by
processing the data by the Isolation Forest
method.

The Isolation Forest was used to find
anomalies by constructing an ensemble of
isolated trees, in each of which partitions were
randomly selected by random features and data
points for constructing the tree. Then, anomalies
were eliminated by reducing the height of
anomalous points in the tree.

This work became a platform for training
models on the dependence of traffic flow
intensity on weather and climate characteristics
and road network factors using the deep learning
method. Table 1 demonstrates the quality of the
neural network model before and after data
processing, including with the Isolation Forest
method. The research results have been tested
and scientifically weighed, indicating an
increase in the quality of the predictive model
on test data.

The work is deemed to be relevant from
theoretical and practical points of view, and
already has application examples that will be
published in future works.

REFERENCES
1. Babkov, V. F. Road conditions and traffic safety

[Dorozhnie usloviya i bezopasnost dvizheniya]. Moscow,
Transport publ., 1993, 271 p. ISBN 5-277-01402-0.

2. Pavlyuk, D. Robust and Responsive Learning of
Spatiotemporal Urban Traffic Flow Relationships. IEEE
Transactions on Intelligent Transportation Systems, 2022,
Vol. 23, Iss. 9, pp. 14524–14541. DOI: 10.1109/
TITS.2021.3130146.

3. Oktarina, Yu., Sastiani, D. Z., Dewi, T. Simulation
Design of Artificial Intelligence Controlled Goods Transport
Robot. Computer Engineering and Applications Journal,
2022, Vol. 11, Iss. 2, pp. 155–165. DOI: 10.18495/
COMENGAPP.V11I2.411.

4. Pugachev, I. N., Shcheglov, V. I. Implementation of
programs for integrated development of transport
infrastructures of agglomerations and neighbouring entities
of the Russian Federation based on creation of an information
system [Realizatsiya program kompleksnogo razvitiya

• World of Transport and Transportation, 2024, Vol. 22, Iss. 2 (111), pp. 156–168

Pugachev, Igor N., Sheshera, Nikolay G., Grigorov, Denis E. Traffic Flow Intensity Research Based
on Deep Learning

168
transportnykh infrastruktur aglomeratsii i sosedstvuyushchikh
subektov Rossiiskoi Federatsii na osnove sozdaniya
informatsionnoi sistemy]. Transport and service, 2021, Iss. 9,
pp. 7–16. EDN: AMDQXT.

5. Lugbade, S., Ojo, S., Imoize, A. L., Isabona, J.,
Alaba, M. O. A Review of Artificial Intelligence and Machine
Learning for Incident Detectors in Road Transport Systems.
Mathematical and Computational Applications, 2022,
Vol. 27, Iss 5, 77. DOI: 10.3390/mca27050077.

6. Moskvitin, V. М., Semenova, N. И. Noise influence
on recurrent neural network with nonlinear neurons. Izvestiya
VUZ. Applied Nonlinear Dynamics, 2023, Vol. 31, Iss. 4,
pp. 484–500. DOI: https://doi.org/10.18500/0869-6632-
003052.

7. Pugachev, I. N., Tormozov, V. S. Development of
a new method for detection and classification of vehicles
using satellite images [Razrabotka novogo metoda
detektirovaniya i klassifikatsiya transportnykh sredstv po
sputnikovym izobrazheniyam]. Dorogi i mosty, 2023,
Iss. 49–1, pp. 199–221. [Electronic resource]: https://rosdornii.
ru/upload/iblock/de5/4m83hirrtm29nzdyiknu9vg4rse3q7me/
11.-Pugachev-Razrabotka-novogo-metoda.pdf. Last accessed
29.12.2023.

8. Pugachev, I. N., Skripko, P. B., Sheshera, N. G.
A software approach to the integrated collection and
preparation of data on vehicle traffic intensity, weather
conditions and natural light in hourly intervals [Programmniy
podkhod k kompleksnomu sboru i podgotovki dannykh ob
intensivnosti dvizheniya transportnykh sredstv, pogodnykh
uslovii i estestvennoi osveshchennosti v chasovykh
intervalakh]. T-Comm: Telecommunications and transport,
2023, Vol. 17, Iss. 10, pp. 43–51. DOI: 10.36724/2072-8735-
2023-17-10-43-51.

9. Kopp, T., Weitemeyer, R., Beyer, J., Ziegler, D.,
Hess, R. Entscheidungsunterstützung in Leitstellen des
Personennahverkehrs – ​Technische und sozio-technische
Herausforderungen [Artificial Intelligence for Decision
Support in Local Public Transport Control Centers–
Technical and Socio-technical Challenges]. HMD Praxis
der Wirtschaftsinformatik, 2023, Vol. 60, Iss. 6, pp.
1156–1173. DOI: https://doi.org/10.1365/s40702-023-
00996-8.

10. Pugachev, I. N., Sheshera, N. G. Application of
statistical analysis methods for assessing the parameters of
traffic flows and characteristics of the street and road network
[Primenenie metodov statisticheskogo analiza dlya otsenki
parametrov transportnykh potokov i kharakteristik ulichno-
dorozhnoi seti]. Far Eastern Law Institute of the Ministry of
Internal Affairs of Russia. Khabarovsk, RIO DVUI MVD of
Russia, 2020, 108 p. ISBN 978-5-9753-0313-4.

11. Chernih, V. S., Zhikharev, A. G., Fedoseev, A. D.,
Marton, N. A. Comparison of efficiency of different methods
of training neural networks. Research Result Information
Technologies , 2023, Vol . 8 , Iss . 1 , pp. 83–93.
DOI: 10.18413/2518-1092-2022-8-1-0-8.

12. Mikhalev, O. N., Yanyushkin, A. S. Automation of
technological processes based on neural network
[Avtomatizatsiya tekhnologicheskikh protsessov na osnove

neironnoi seti]. Automation. Modern technologies, 2022,
Vol. 76, Iss. 4, pp. 147–152. EDN: DIEMHO.

13. Nguyen, H. T., Nguyen, L. T., Afanasiev, A. D.,
Pham, L. T. Classification of Road Pavement Defects Based
on Convolution Neural Network in Keras. Automatic Control
and Computer Sciences, 2022, Vol. 56, Iss. 1, pp. 17–25.
DOI: https://doi.org/10.3103/S0146411622010084.

14. Sokerin, D. D. Introduction to Artificial Neural
Networks [Vvedenie v iskusstvennie neironnie seti].
Information and Education: The Frontiers of Communication,
2023, Iss. 15 (23), pp. 284–286. EDN: WKHNMZ.

15. Pugachev, I. N., Sheshera, N. G., Shcheglov, V. I.
Analysis of geometric elements of roads when assessing their
accident rate by means of modern geoinformational systems.
Bulletin of civil engineers, 2021, Iss. 3 (86), pp. 127–133.
DOI: 10.23968/1999-5571-2021-18-3-127-133.

16. Arrykova, G. K., Ezizova, S. E., Garayev, G. B.,
Khodzhakaeva, D. M. Artificial intelligence and neural
networks: modern technologies in solving key problems
[Iskusstvenniy intellect i neironnie seti: sovremennie
tekhnologii v reshenii klyuchevykh problem]. Ceteris Paribus,
2023, Iss. 12, pp. 16–18. [Electronic resource]: https://sciartel.
r u / a r h i v - j o u r n a l / C P ‑ 2 0 2 3 – 1 2 . p d f ? y s c l i d =
m06mw02bpt288436451 [full text of the issue]. Last accessed
29.12.2023.

17. Shashev, D. V., Shatravin, V. V. Implementation of
the sigmoid activation function using the concept of
reconfigurable computing environments [Realizatsiya
sigmoidnoi funktsii aktivatsii s pomoshchyu kontseptsii
perestraivaemykh vychislitelnykh sred]. Bulletin of Tomsk
State University. Management, Computer Science and
Information Technology, 2022, Iss. 61, pp. 117–127. EDN:
PDIJZM.

18. Dulesov, A. S., Baishev, A. V., Karandeev, D. Yu.,
Dulesova, N. V., Karandeeva, I. Yu. Preliminary processing
of statistical data on the state of homogeneous technical objects
[Predvaritelnaya obrabotka statisticheskikh dannykh o
sostoyanii odnorodnykh tekhnicheskikh obektov]. Scientific
and Technical Bulletin of Volga Region, 2023, Iss. 4, pp. 80–
83. EDN: EFIDGU.

19. Rezova, N. L., Kazakovtsev, L. A., Shkaberina, G. Sh.,
Tsepkova, M. I. Preliminary data processing for analysing the
behaviour of complex systems [Predvaritelnaya obrabotka
dannykh dlya analiza povedeniya slozhnykh system]. Control
Systems and Information Technologies, 2022, Iss. 2 (88),
pp. 40–45. EDN: BYGESB.

20. Akimov, A. A., Valitov, D. R., Kubryak, A. I.
Preliminary data processing for machine learning
[Predvaritelnaya obrabotka dannykh dlya mashinnogo
obucheniya]. Scientific review. Technical sciences, 2022, Iss. 2,
pp. 26–31. EDN: GWGJSK.

21. Bezmenov, I. V. Method of cleaning measurement
data from outliers: search for an optimal solution with
a minimum number of rejected measurement results [Metod
ochistki izmeritelnykh dannykh ot vybrosov: poisk optimalnogo
resheniya s minimalnym kolichestvom otbrakovanykh
resultatov izmerenii]. Measuring equipment, 2023, Iss. 1, pp.
16–23. EDN: KISWIN.

Information about the authors:
Pugachev, Igor N., D.Sc. (Eng), Associate Professor, Deputy Director for Scientific Work of Khabarovsk Federal Research Centre

of the Far Eastern Branch of the Russian Academy of Sciences (KhFRC FEB RAS), Khabarovsk, Russia, ipugachev64@mail.ru.
Sheshera, Nikolay G., Ph.D. (Eng), Associate Professor at the Department of Information and Technical Support of Internal Affairs

Bodies of Far Eastern Law Institute of the Ministry of Internal Affairs of Russia, Khabarovsk, Russia, kolyaka239@mail.ru.
Grigorov, Denis E., Head of the Office of Special Disciplines of the Department of Information and Technical Support of Internal

Affairs Bodies of Far Eastern Law Institute of the Ministry of Internal Affairs of Russia, Khabarovsk, Russia, glowfisch8lan@gmail.com.

Article received 29.12.2023, approved 24.04.2024, accepted 15.05.2024.

●

• World of Transport and Transportation, 2024, Vol. 22, Iss. 2 (111), pp. 156–168

Pugachev, Igor N., Sheshera, Nikolay G., Grigorov, Denis E. Traffic Flow Intensity Research Based
on Deep Learning

