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The most accurate modelling of spatial distribution of 
passenger flows is a prerequisite for successful planning of 
development of the transport system. It is the basis for 
calculation of a predictive trip matrix. An approach based on the 
gravity model is among main modelling methods.

The work investigates the issue of the adequacy of the 
gravity model with a double constraint and an exponential- power 
function of gravitation. It is this specification of the model and 
its particular cases with exponential and power functions of 
gravitation that are most often used to estimate spatial 
distribution of passenger flows both in theoretical and applied 
research.

Calibration and validation of the specified model is shown 
on the observed (actual) matrix of railway passenger origin- 
destination matrix. It was built with the help of the data of 
Express [railway ticketing] ADB ACS: the number of tickets sold 
for long-distance trains for all the pairs of directly linked stations.

Since calibration of the gravity model can be carried out by 
different methods (depending on how the model incorporates 
stochasticity, which is responsible for differences between the 
modelled and observed data), after a detailed analysis of the most 
common methods for calibrating the gravity model, the approach was 
chosen based on the maximum likelihood estimation. The work also 
analyses the gravity model validation tools used to estimate the 
proximity between the observed and modelled trip matrices.

Comparison of the modelled and observed trip matrices resulted 
in the conclusion that the gravity model under consideration predicts 
several aggregate indicators with a high degree of accuracy: total 
passenger turnover, average travel distance, and travel distance 
distribution. At the same time, it is shown that the error in the forecast 
of passenger flow for most individual origin- destination trips is quite 
large. This circumstance significantly reduces the possibility of 
practical application of the gravity model for the analysis and modelling 
of passenger flows in long-distance railway passenger traffic.
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INTRODUCTION

In Russia, the overall structure of intercity 
passenger transportation is dominated by road 
and railway transport . The main volume of 
passenger transportation with a length of up to 
300 km falls on bus and suburban railway routes . 
However, long-distance rail traffic plays the main 
role for trips over distances from 300 to 1000 km 
(for longer routes, air traffic is of primary 
importance) . It is railway transport that to a large 
extent ensures connectivity (including social one) 
of the territory of the Russian Federation and 
interregional transport accessibility, improvement 
of which is designated as a priority goal for 
development of the transport system 1 .

A necessary prerequisite for successful 
planning of development of the transport system 
is associated with the most accurate modelling 
of spatial distribution of passenger flows, on the 
basis of which the forecast trip matrix (TM) is 
calculated . Two main methods used for modelling 
are entropy and gravity ones . The former is based 
on the assumption that the transport system, 
considered as a system of movement of 
individuals, is closed and tends to reach an 
equilibrium state corresponding to the maximum 
entropy 2 . A detailed presentation of this method 
can be found, for example, in the monograph [1] .

The latter method is based on an analogy 
with Newton’s law of gravity . With this 
approach, it is assumed that the passenger flow 
depends on the size of the points of departure 
and arrival and the distance between them, and 
that between near and large points, the passenger 
flow is greater than between small and distant 
ones . The specific form of such dependence is 
determined by the modelled system and 
additional constraints .

The first attempts to use the gravity model to 
describe spatial distribution of various types of 
economic and social interaction were made in 
the 1930s [2], and possibly even earlier [3] . 
However, this model became widespread in the 
1950s [4] and has since been actively used to 
model transport, trade, financial, migration flows, 

1 Transport Strategy of the Russian Federation till 2030 with 
a forecast for the period up to 2035 . Approved by the order 
of the Gevernment of the Russian Federation of 27 .11 .2021 
No . 3363-r . (in Russian) . [Electronic resource]: http://static .
government .ru/media/files/7enYF2uL5kFZlOOpQhLl0nUT
91RjCbeR .pdf . Last accessed 22 .12 .2022 .
2 Gasnikov, A . V ., Klyonov, S . L ., Nurminsky, E . A . [et al] . 
Introduction to Mathematical Modelling of Transport Flows: 
Study guide . Ed . by A . V . Gasnikov . Moscow, MFTI publ ., 
2010, 362 p . ISBN 978-5-7417-0334-2 .

etc . (examples of application of gravity model in 
fields not related to transport along with the 
relevant references can be found in the article of 
one of the authors [5]) .

In the 1960s and 1970s, the mathematical 
properties of the gravity model were studied in 
detail by the efforts of several scientists . In 
particular, the works [6–9] proposed and 
rigorously substantiated methods for calibrating 
the model based on empirical data . A rather 
complete exposition of these and other theoretical 
issues is contained in the review article [3] and 
the monograph [10] . Also, during this period, the 
application of the gravity model began to predict 
the spatial distribution of passenger flows in 
specific cities and territories when developing 
plans for development of transport infrastructure 
[11] . However, during those years, the practical 
use of the gravity model was rather limited, since 
the collection of empirical data necessary for 
calibrating the model was carried out through 
surveys and direct observations . This required 
the involvement of a large number of traffic 
checkers and, accordingly, implied significant 
costs .

The situation concerning availability of data 
has begun to change since the late 1990s due to 
development of information technology . The 
widespread introduction of video surveillance 
systems on the roads, the use of cashless 
payments, the emergence of smartphones with 
geolocation and other similar technologies have 
made it possible to obtain sufficiently complete 
and reliable information about transport flows .

As availability of such data has increased, the 
number of works aimed at testing the adequacy 
of the gravity model for modelling the spatial 
distribution of passenger flows for various 
territories and transport systems has increased 
significantly . Results of this kind can be found 
in [12–19] and many other works . In particular, 
it was shown in [12] that the gravity model quite 
well describes the spatial distribution of air 
passenger transportation volume across the 
countries of Central Europe .

The article [13] used data on daily work trips 
in six countries to test the adequacy of various 
modifications of the gravity model . Among other 
things, this work showed that for such data, the 
gravity model gives a sufficiently good forecast 
for small and medium distances, but for large 
distances, the accuracy of the forecast is 
significantly reduced . Data on work trips were 
also used in [14] to assess the possibility of using 

• World of Transport and Transportation, 2023, Vol. 21, Iss. 1 (104), pp. 213–223

Martynenko, Alexander V., Saifutdinov, Denis Zh. Adequacy of the Gravity Model of Railway 
Passenger Flows



215

a gravity model, calibrated using the data of one 
region, to predict trips in another region . In [15], 
the gravity model was validated based on data 
on carpooling trips made in one of the regions of 
Russia .

In [16], the gravity model was tested for cargo 
railway flows between provinces in China . The 
article [19] contained a similar study regarding 
passenger transportation by rail . In this work, 
based on data on the volume of passenger 
transportation on one of the lines of the Spanish 
railways, the authors showed that the gravity 
model approximates the observed data much 
better than the Poisson regression .

Checking the adequacy of the gravity model 
for specific transport systems, territories and 
modes of transport is necessary to justify the 
legitimacy of using the gravity model to solve 
applied problems . From a practical point of view, 
the gravity model is an integral part of the four-
step transportation model [1], which is actively 
used in making managerial decisions on 
development of transport infrastructure 34,, and is 
implemented in all modern transport modelling 
software (PTV Visum, TransNet, and others) .

The gravity model can be used in the four-
step model at the second step to calculate the 
total TM (for all modes of transport), after which, 
at the third step, for each origin- destination 
segment, the splitting of passenger traffic per 
different modes of transport is calculated . Also, 
the gravity model can be used in the form of 
a so-called synthetic gravity model for 
simultaneous calculation of TM and splitting per 
mode of transport (that is, the second and third 
steps are combined) . In this case, the gravity 
model is used to calculate TM for each mode of 
transport separately . Accordingly, practically 
significant results can be obtained only if the 
gravity model adequately describes the spatial 
distribution of passenger flows for each mode of 
transport separately .

3 Methodological guidelines for development and 
implementation of measures for organisation of traffic . 
Organisation of traffic at controlled intersections . JSC 
Scientific Research Institute of Automobile Transport, 
Moscow, 2017 . [Electronic resource]: https://e-ecolog .ru/
docs/zZ7TAN6o8Pn- TZ7JAQqI2/ . Last accessed 22 .12 .2022 .
4 STO [organisation’s standard] AVTODOR 2 .2–2013 . Design, 
construction, operation of highways . Recommendations for 
predicting traffic intensity on toll sections of highways of 
the Avtodor state company and income from their operation . 
Moscow, Standard of the Avtodor State Company, 2013 . 
[Electronic resource]: https://studylib .ru/doc/2002300/
rekomendacii-po-prognozirovaniyu- intensivnosti-
dorozhnogo/ . Last accessed 22 .12 .2022 .

In particular, when creating a transport model 
on a national scale, this also applies to long-
distance railway transportation . Therefore, the 
main objective of the study was to test the 
adequacy of the gravity model for modelling the 
spatial distribution of passenger flows in long-
distance railway transportation .

RESULTS
Gravity Model

Let passengers make trips from points of 
departure i = 1, 2,…, I to points of destination 
j = 1, 2,…, J and cij which is the generalised cost 
of a trip from point i to point j is known 
(generalised cost is a value that includes all the 
time and financial expenses of a passenger for 
the trip) . Let’s denote by Tij the number of trips 
from point i to point j . Obviously, Tij depends on 
the point of origin i, the point of destination j and 
the value cij . One of the simplest forms of such 
a dependence is a relation of the form:

( )ij i j ijT a b f c= , (1)

where ai and b j are some quantitative 
characteristics of origin and destination points;

f(c) –  a non-negative function that is defined 
for all c > 0 .

If the function f(c) is decreasing, and the 
characteristics ai and bj are interpreted as the sizes 
of the points of origin and absorption of 
passenger flows at the corresponding points, then 
dependence (1) is a mathematical implementation 
of the empirical rule «large and near situated 
objects interact more strongly than small and 
distant» . Due to the similarity with Newton’s law 
of universal gravitation, dependence (1) is called 
the gravity model .

Let si be the number of departures from point 
i (to all points of arrival), dj –  the number of 
arrivals at point j (from all points of departure) . 
Then it follows from the obvious identities 

1

J

ij ij
T s

=
=∑ , 1

I

ij ji
T d

=
=∑  that ai and bj must satisfy 

the equalities
( )
( )

1

1

1

1

� ,.., ,�

� ,.., .�

J

i j ij ij

I

i j ij ji

a b f c s i I

a b f c d j J

=

=

 = ∀ =

 = ∀ =

∑
∑

 (2), (3)

For given si and dj, the system (2), (3) is 
a system of equations for the unknowns ai and 
bj . If for any cij the condition ( ) 0ijf c >  is satisfied 

and
1 1

,
I J

i ji j
s d

= =
=∑ ∑

then the system (2), (3) has a solution [7] . In this 
case, the solution will not be unique (if *

ia , *
jb  is 
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a solution to system (2), (3), then *

iaθ , 1 *
jb−θ will 

also be a solution for any 0θ > ) . However, it was 
shown in [7] that for any two different solutions 

1
ia , 1

jb  and 2
ia , 2

jb , the equality 1 1 2 2
i j i ja b a b=  will 

hold for any i, j .
This means that Tij does not depend on which 

particular solution of system (2), (3) will be used 
in (1) . Thus, the gravity model (1) establishes 
a one-to-one correspondence between the TM Tij  
on the one hand and a pair of vectors ( 1, , Ia a ), 
( 1, , Jb b ) on the other .

The function f (cij) is called the gravitation 
function . It shows the «readiness» of the 
passenger to make a trip, depending on the size 
of the generalised cost cij . As a function of 
gravitation f (cij), the researchers often use 
a power function ( )ij ijf c c−µ= , an exponential 

function ( ) ( )expij ijf c c= −µ  or a combined function 

( ) ( )exp ,ij ij ijf c c cg= −µ  which  i s  a l so  ca l led 

exponential- power function .
The power and exponential functions of 

gravitation monotonically decrease for cij > 0, so 
for these functions, the lower is the generalised 
cost c ij, the greater is the «readiness» of 
a passenger to make a trip . In many cases, this is 
true, but in some situations, for small values of 
cij, this may not be the case . For example, for 
intra-city public transport, many passengers have 
a lower «willingness» to travel between adjacent 
stops than for a longer distance (between two 
adjacent stops, such passengers prefer to walk) . 
A similar situation will be true for long-distance 
railway transportation: for trips over short 
distances, passengers choose commuter trains or 
buses . Consequently, in such cases, to describe 
gravity, the combined function is more adequate, 
which, in the case of g > 0, first increases and 
then decreases . Therefore, further we will 
consider (1) with the combined gravitation 
function, that is, in the form:

( )exp .�ij i j ij ijT a b c cg= −µ  (4)

Calibration of the Gravity Model 
using the Observed TM

Let us assume that as a result of observations, 
the TM { }ijN n= , 1, ,i I= … , 1, ,j J= …  is obtained 

and consider the problem of estimating the 
parameters ia , jb , g  and µ  of the model (4) 
using the observed matrix N . Obviously, the 

method of estimation depends on how exactly 
the model incorporates the stochasticity that is 
the cause of the deviation of the observed values 
nij from the modelled values Tij . Let’s take 
a closer look at some of the most popular 
approaches .

1 . The simplest option is to assume that 
ij ij ijn T= + e  where eij is a random variable . In this 

case, it is natural to use the least squares method 
(LSM) to estimate the model parameters . As 
a result, we get the minimisation problem:

( ) ( )

( )( )

2

2

,

� , , , �

,

, , ,

exp ,
i j

i j ij iji j

a b

ij i j ij iji j

S a b n T

n a b c c min
g µ

g

g µ = − =

= − −µ →

∑

∑
which, as a result of applying standard methods 
of mathematical analysis, leads to a system of 
equations for determining the parameters ai, bj, 
g and µ:

( )
( )

( )
( )

0 1
0 1

0 1 0 1

00
0

0

,

,

� ,.., ,

� ,.., ,

� ,.., , � ,.., ,

,�
,�

ln .�

.�

i
ij ij iji

ij ij ijjj

ij ij ij iji j

ij ij ij iji j

S
i I

a
T n T i I

S
j J T n T j Jb

S C T n T

C T n T
S

∂ = ∀ = ∂  − = ∀ =
 ∂

= ∀ =  − = ∀ =∂ ⇔ 
∂ − = = ∂µ

  − =∂ = ∂g

∑
∑

∑
∑

 (5)

The weak point of this approach is that the 
use of least squares requires restrictions on ije , 
which in this case, most likely, will not be 
sat isf ied .  In part icular,  ije will  not  be 
homoscedastic (obviously, the variance ije

depends on the value of Tij) . Also, a significant 
disadvantage of using LSM is the lack of 
a meaningful interpretation for equations (5) .

2 . Another approach, which was first 
rigorously stated in [8], is based on the assumption 
that each passenger randomly and independently 
of other passengers chooses one origin- 
destination segment (i, j) from I•J  correspondences 
to make a trip . Moreover, the probability pij of 
choosing trip (i, j) is the same for all passengers . 
With this approach, Tij is interpreted as the 
theoretical selection frequency of trip (i, j) with 

, iji j
n n= ∑  passengers, that is, ij ijT np=  . Therefore, 

the gravity model (4) can be written as:
( )1

exp .�ij i j ij ijp a b c c
n

g= −µ  (6)

To estimate the parameters 1 1, ,� ,� , ,� ,� ,�I Ja a b b… … g µ  
of the model (6) based on the observed matrix 
N, the maximum likelihood method is used . In 
this case, the likelihood function will look like:
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( ) ( )

( )( )
1 1

1

1 1

,� , ,�

� exp .

ij

ij

I J
n

i j ij
i j

I J n

i j ij ij
i j

L L a b p

n a b c c

= =

− g

= =

= g µ = =

= −µ

∏∏

∏∏

Taking the logarithm of the function L and 
considering that 1lnijn n−  does not depend on the 
model parameters, and also that the probabilities 
pij must satisfy the normalisation condition 

1ijp∑ = , we arrive at the conditional optimisation 
problem:

( )
( )

1 1

1 1

� , , , �

ln � ln ln � ,

exp .

i ja b
I J

ij i j ij iji j

I J

i j ij iji j

L n lna b c c max

a b c c n

g µ

= =

g

= =

= + + g −µ →

−µ =

∑ ∑
∑ ∑

Next, we use the method of Lagrange 
multipliers . The Lagrange function will look like:

( ) ( )1 1
,� , ,� , � � ln ln �

I J

i j ij i j ij iji j
F a b n lna b c c

= =
g µ λ = + + g −µ −∑ ∑

( )( )1 1
exp .

I J

i j ij iji j
a b c c ng

= =
−λ −µ −∑ ∑

Equating the partial derivatives of the 
function F to zero, we get (7)–(11) .

If each of equations (7) is multiplied by ia  
and summed over i (or each of equations (8) is 
multiplied by bj and summed over j), then we 
get:

( )1 1 1 1
exp .

I J I J

i j ij ij iji j i j
a b c c n ng

= = = =
λ −µ = =∑ ∑ ∑ ∑  (12)

From here and from (11) it follows that λ = 1 . 
Also (12) means that equation (11) is 
a consequence of each of the group of equations 
(7) and (8) . Therefore, taking into account (4), 
the system of equations (7)–(11) takes the form:

1 1

1 1

1 1 1 1

1 1 1 1

1

1

� ,.., ,�

� ,.., ,�

,

ln ln .�

J J

ij ijj j

I I

ij iji i

I J I J

ij ij ij iji j i j

I J I J

ij ij ij iji j i j

T n i I

T n j J

T c n c

T c n c

= =

= =

= = = =

= = = =

 = ∀ =

 = ∀ =


=

 =

∑ ∑
∑ ∑

∑ ∑ ∑ ∑
∑ ∑ ∑ ∑

 (13)–(16)

Thus, estimates of the parameters a1,..., aI, 
b1,..., bJ, g, µ a1 can be found from the system of 

equations (13)–(16) . In contrast to system (5), 
here all equations have a transparent interpretation, 
which corresponds well to the content of the 
gravity model . In particular, equation (13) means 
that for each point i, the model number of 
departures (to all points of arrival) must match 
the observed number of destinations . Similarly, 
equation (14) means that the corresponding 
modelled and observed arrivals coincide . 
Equation (15) shows that the total modelled cost 
of all trips should equal the total observed cost 
of all the trips . If both parts of (15) are divided 
by 

, ,ij iji j i j
T n=∑ ∑ , then it can be interpreted as an 

equality of the corresponding average costs . The 
last equation has the same meaning as (15), but 
only for the logarithmic generalised cost cij .

3 . Another approach was proposed in [9] to 
include stochasticity in the gravity model . In this 
work, the number of trips from point i to point j 
is a discrete random variable Θij, and the value Tij 
given by formula (4) is interpreted as the 
mathematical expectation of the value Θij, that is:

( )exp .ij ij i j ij ijM T a b c cg Θ = = −µ 

Let’s assume that the values Θij ( 1� � , ,i I= … , 
1� � , ,�j J= … ) are independent in the aggregate and 

obey the same distribution law (with different 
parameter values):

( ) ( ) ( )( ), , exp .ij ij i j ij ijPr k k T k a b c cgΘ = = ϕ = ϕ −µ

Then, to estimate the parameters a1,..., aI, 
b1,..., bJ, g, µ based on the observed matrix N, 
we use the maximum likelihood method . In this 
case, the likelihood function will look like:

( ) ( )

( )( )
1 1

1 1

,� , ,�

� , exp .

I J

i j ij ij
i j

I J

ij i j ij ij
i j

L L a b Pr n

n a b c c

= =

g

= =

= g µ = Θ = =

= ϕ −µ

∏∏

∏∏

After taking the logarithm of the function L, 
we obtain the following optimisation problem:

(7)–(11)
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( )

( )( )
1 1

1 1

� , , , �

ln ln , �

ln , exp � .
i j

I J

ij ij
i j

a bI J

ij i j ij ij
i j

L n T

n a b c c max

= =

g µ
g

= =

= ϕ =

= ϕ −µ →

∑∑

∑∑

Equating the partial derivatives of the 
function ln L to zero, we obtain a system of 
equations for determining the required parameter 
estimates (17)–(20) .

The specific form of equations (17)–(20) 
depends on the choice of distribution ϕ . Quite 
often, the Poisson distribution is used as ϕ:

( ) ( )exp
,� .

!

ijn

ij ij

ij ij
ij

T T
T n

n

−
ϕ =

It can be verified by direct calculations that 
in this case system (17)–(20) turns into a system 
of equations (13)–(16) . If we take the normal 
distribution as ϕ:

( ) ( )2

2
1

22

�
,� exp ,ij ij

ij ij

T n
T n

 − ϕ = −
 ss π  

then system (17)–(20) turns into system of 
equations (5) . Moreover, this will be true for any 
standard deviation s .

Thus, the third approach to modelling the 
stochasticity of the gravity model generalises the 
first and second approaches in the sense that it 
leads to identical systems of equations for 
determining model parameter estimates . At the 
same time, it should be emphasised that the first 
and third approaches model stochasticity in 
virtually the same way: in the first approach, 

ij ij ijM T M T   = + e     under a fairly natural 

assumption that 0ijM  e =  , that is, in both 

approaches, the modelled number of origin- 
destination trips is interpreted as the mathematical 
expectation of the observed number of the trips . 
However, the second approach is fundamentally 
different from them: in it, the modelled relative 
frequency of origin- destination trips is the 
probability that a passenger chooses this trip .

As mentioned above, the first approach and 
equations (5) obtained on its basis are rarely used 

to estimate the parameters of the gravity model 
and mainly in theoretical studies (one example of 
using the first approach to estimate the parameters 
of the TM based on the entropy model can be 
found in [20]), which is due to the need to impose 
not very realistic restrictions on ije  . At the same 
time, equations (13)–(16) are the main tool for 
estimating the parameters of the gravity model 
both in scientific research and when creating 
transport models for specific areas . Therefore, in 
this work, to calibrate model (4), we will use the 
system of equations (13)–(16) . This system does 
not have an analytical solution, so it is necessary 
to use approximate methods to solve it .

Equations (13)–(14) actually represent 
system (2)–(3), where the observed numbers of 
departures and arrivals are used as si and dj, which 
means that the above statements about the 
existence and uniqueness of the solution will be 
valid for them (this again emphasises the 
naturalness of using system (13)–(16) for model 
calibration) . Therefore, for given values of g and 
µ, system (13)–(14) uniquely determines all 
products ai bj, that can be found approximately 
using the method of simple iterations . To do this, 
ai are expressed from equations (13), and bj  are 
expressed from equations (14) . Then all ai  are 
given some initial values (usually one) and bj are 
calculated from them based on equations (14) . 
Based on the obtained values of bj, ai are 
calculated from equations (14) and so on . The 
process is continued until equalities (13)–(14) 
are fulfilled with a given level of accuracy . Such 
an algorithm is called the Fratar method, or the 
Furness method, or the biproportional algorithm 
(for details, see the monograph [21]) .

Thus, equations (13)–(14) define the function 
( ) ( ) ( ), � , � , �i jq a bg µ = g µ g µ  . Therefore, (15)–(16) are 

equations for g and µ (21)–(22) .
Although the function ( ), �q g µ  is smooth, it 

cannot be specified analytically, moreover, only 
its approximate values are available to us . 
Therefore, to solve system (21)–(22), it is 

 (17)–(20)
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convenient to pass to an equivalent optimisation 
problem:

( ) ( ) ( )1 2,� ,� ,�H H Hg µ = g µ + g µ =

( )

( )

, ,

, ,

, � �

, � ln �ln �

,�

ij ij ij ij
i j i j

ij ij ij ij
i j i j

T c c n

T c n c

min

= g µ − +

+ g µ − →

→

∑ ∑

∑ ∑  (23)

to solve which it is necessary to use gradientless 
optimisation methods .

Initial Data
To calibrate the gravity model in this work, 

we used data from the automated control system 
of the Express ADB ACS, available through the 
Correspondence and financial results AWP . This 
system allows getting the number of tickets sold 
for long-distance trains for any pair of departure 
and arrival stations, that is, the observed TM .

The data processed covered a month of 20195 . 
The period was typical for prepandemic period . 
In total, the ACS contains information about 
almost 37000 stations . But the vast majority of 
stations generate negligible passenger traffic . For 
35000 stations, the number of departed and 
arrived passengers (for all destinations) is only 
a few per month . For another 1000 departure 
(arrival) stations, there are no more than 500 
passengers per month, that is, less than 20 people 
per day . Therefore, it makes no sense to use all 
5 Data were collected directly from Express ADB ACS based 
on the agreement on the access granted in 2019 to the Ural 
State University of Railway Transport  for research purposes .

stations to calculate the parameters of the gravity 
model . It is also necessary to keep in mind that 
several railway stations can be located in one and 
the same city, so their passenger flows must be 
combined, and TM should be considered by 
stations, but by cities .

To compare the quality of approximation for 
observed TM of different sizes, we will calibrate 
the model on two data sets: TM for cities, each 
of which has a total of more than 20 thousand 
departures and arrivals, as well as TM for cities, 
each of which has a total of more than 50 
thousand departures and arrivals . For brevity, we 
will call the first of them a large TM (LTM), and 
the second a small TM (STM) . The statistics of 
these TM are presented in Table 1 .

Note that TM under consideration have a rather 
large number of zero correspondences (see Table 1) . 
In particular, because there is no direct passenger 
communication between many cities . The points 
of departure and arrival within STM, as well as all 
origin- destination trips with a volume of more than 
5000 passengers, are shown in Pic . 1 .

Also, visualisation of the observed data for 
STM case is shown in Pic . 2 . Here, a high degree 
of heterogeneity in distribution of passengers by 
origin- destination trips is clearly visible: the vast 
majority of cities have significant passenger 
flows for a small number of origin- destination 
trips (from 1 to 4) and only for a few cities 
distribution of passengers by origin- destination 
trips looks uniform .

As a generalised cost cijin the gravity model, 
we will use the tariff distance between stations . 

( ) ( ) ( )

( ) ( ) ( )
1 1 1 1 1 1

1 1 1 1 1 1

, � , � exp ,�

, � ln , � exp ln ln .

I J I J I J

ij ij ij ij ij ij ij
i j i j i j

I J I J I J

ij ij ij ij ij ij ij
i j i j i j

T c q c c c n c

T c q c c c n c

g

= = = = = =

g

= = = = = =


g µ = g µ −µ =  



 g µ = g µ −µ =  

∑∑ ∑∑ ∑∑

∑∑ ∑∑ ∑∑
 (21)–(22)

Table 1
Main characteristics of observed TM [calculated by the authors]

Characteristics LTM STM
Number of cities 98 38
Number of specific origin- destination trips 9604 1444
Number of passengers 3743252 2240018
Number of zero specific origin- destination trips 6217 616
Number of specific origin- destination trips with less than 10 passengers 6504 622
Maximum number of passengers for one specific origin- destination trip 30006 30006
Average number of passengers for all origin- destination trips 390 1551
Average number of passengers for all non-zero specific origin- destination trips 1105 2705
Median number of passengers for all specific origin- destination trips 0 134
Median number of passengers for all non-zero specific origin- destination trips 157 835
Passengers turnover, thousand people-km 4563511 3009016
Average trip distance, km 1219,13 1348,3
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If there is no direct passenger link between 
stations i and j, then we accept that cij = ∞ . We 
also do the same for the diagonal elements of 
TM, that is, cij = ∞  for any i . In calculations, 
a sufficiently large number is used as ∞ .

For such a choice of cij, the left and right 
sides of equation (21) are the modelled and 
observed passenger traffic, respectively, and the 
minimised function ( )1 ,�H g µ  is equal to the 
absolute deviation of the modelled passenger 
traffic from the observed one . If both parts of 
equation (21) are divided by 

, ,ij iji j i j
T n=∑ ∑ , then 

we get the model and observed average trip 
distances (ATD) . Equation (22) can be 
interpreted similarly for a logarithmic distance 
(logdistance) . Thus, the calibration of the 
gravity model is reduced to the selection of such 

values of the parameters g and µ, at which the 
modelled passenger turnover coincides with the 
observed one .

We also note that the parameters g and µ do 
not depend linearly on the choice of the 
measurement unit cij . In particular, if cij is 
measured in kilometers, then at distances of 
several thousand kilometers characteristic of 
the Russian railway network, the values of g 
and µ may turn out to be less than computer 
zero . Therefore, the values of cij will be set in 
thousand km .

Simulation Results
The Nelder–Mead method was used to 

minimise function (23) . The results obtained are 
presented in Table 2 .

Pic. 2. Visualisation of STM [built by the authors].

Pic. 1. STM correspondences with a volume of more than 5000 passengers [built by the authors].
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As can be seen from the Table 2, in both cases, 
the model calibration was performed with 
a sufficiently high accuracy . In particular, the 
modelled passenger turnover is equal to the 
observed one with a relative error of less than 
0,01 % .

To validate the gravity model, the proximity 
between the observed and modelled TM is 
estimated, and the modelled and observed 
distributions of travel distances are compared 
(this approach is also available in situations 
where the observed TM is unknown, and the 
distribution of travel distances is obtained using 
surveys) . In this case, certain difficulties may 
arise in the use of standard tools for comparison 
and interpretation of the results obtained (see 
[22–24] and, especially, [25]) . In particular, the 
use of the chi-square test to compare TM (and 
travel distance distributions) almost always 
leads to rejection of the hypothesis about the 
coincidence of modelled and observed 
frequencies, which is due to the sparseness of 
the observed TM and the very high sensitivity 
of this criterion for large sample sizes . Similar 
difficulties arise when using other chi-square 
criteria .

It is also necessary to use with precaution 
such indicators as the correlation coefficient, the 
coefficient of determination, and the like as 
proximity measures because of strong nonlinearity 
(for close values of these indicators, the quality 
of the models can differ significantly [22; 25]) . 
To overcome the difficulties associated with 
nonlinearity, relative information criteria have 
been developed that depend on errors «almost 
linearly» and therefore allow effectively 
comparing different models [25] . If the task is to 
check the adequacy of one model, then here it is 
necessary to proceed from the meaningful 
formulation of a specific problem and use easily 

interpretable proximity measures such as the 
average absolute error and others .

In our case, the distribution of travel distances 
for the observed and modelled matrices is shown 
in Pic . 3 . Here, the modelled values are in good 
agreement with the observed ones: the total 
deviation for all intervals is 14 % for both STM 
and LTM, that is, only 14 % of the passengers 
predicted by the model will travel distances 
different from those observed . In passing, we note 
that, as mentioned above, the formal application 
of the chi-square test leads to the conclusion that 
the modelled and observed frequencies differ: for 
STM and LTM, the values of the criterion are 

2 150031obsχ =  and 2 149143obsχ = , respectively .
Quantitative estimates of proximity of 

matrices are presented in Table 3 . Here it can be 
immediately noted that, except for MAE (mean 
absolute error) and S (standard deviation), all 
indicators are practically the same for LTM and 
STM . The strong differences between MAE and 
S are due to the fact that LTM and STM differ 
much more in the number of specific origin- 
destination trips than in the number of passengers .

The obtained values of indicators MAE, 
MAEp and S in Table 3 indicate a low level of 
agreement between the observed and modelled 
values . In particular, the MAE value is more than 
50 % of the average and median number of 
passengers (see Table 1), and MAEp shows the 
same values relative to one passenger . The 
coefficients of correlation and determination 
show a higher level of compliance, but as already 
noted, in this situation this is of secondary 
importance .

The final conclusions regarding the quality of 
the obtained model can be drawn from Pic . 4 . In 
the picture, along with the residuals of the model, 
straight lines y = 0,1x and y = 0,5x (on a logarithmic 
scale along the x axis) are plotted, which highlight 

Table 2
Gravity model calibration results [calculated by the authors]

Value LTM STM
Parameter g 0,3611 0,6616

Parameter µ 1,1515 1,3093

Function to be minimised ( )� ,�H g µ 365,1 32,7

Absolute deviation of passenger turnover ( )1 ,�H g µ 199,7 18,29

Absolute passenger turnover deviation for logdistance ( )2� ,�H g µ 165,4 14,44

Relative deviation of passenger turnover ( )1� ,� / ij ijH c ng µ ∑ 4,4×10–5 6,1×10–6

Relative deviation of passenger turnover for logdistance 
( )2 ,� / lnij ijH n cg µ ∑

5,5×10–4 9,2×10–5
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modelled

modelleda) 

a) 

b)

b)

Pic.3. Comparison of the modelled and observed distribution of travel distance for: a) LTM; b) STM [built by the authors].

Pic. 4. Model deviations for: a) LTM; b) STM (logarithmic scale is used on the horizontal axis) [built by the authors].

Table 3
Proximity measures between modelled and observed TM [calculated by authors]

Measure of proximity of matrices LTM STM

Mean absolute error ( )
,

� /ij iji j
MAE n T I J= −∑ 

242 886

Absolute error averaged per passengers 
, ,

/p ij ij iji j i j
MAE n T n= −∑ ∑ 0,62 0,57

Standard deviation ( ) ( )( )1 22
1

/

,
� /ij iji j
S n T I J= − −∑ 

1152 2337

Correlation coefficient ( ) ( ) ( )( )� , /ij ij ij ijr cov n T n T= s s 0,77 0,78

Correlation coefficient r  only for 0ijn > 0,75 0,75

Determination coefficient ( ) ( )222 1
, ,

/ij ij ij iji j i j
R n T n n= − − −∑ ∑ 0,55 0,59

Determination coefficient 2R  only for 0ijn > 0,51 0,53

10 % and 50 % of the model deviation for specific 
origin- destination trips . The Pic . 4 shows that there 
are few accurate forecasts (with a deviation of less 
than 10 %), and a lot of inaccurate forecasts (with 
a deviation of more than 50 %) . And this is true 
for specific origin- destination trips with any 
volume of passengers . Thus, the gravity model 

cannot be used to predict passenger flows on 
individual origin- destination segments .

CONCLUSIONS
Checking the adequacy of the gravitational 

model with a double constraint and an exponential- 
power function of gravitation for modelling the 
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origin- destination trip matrix of a long-distance 
railway transportation shows that:

1) The model predicts with high accuracy 
such aggregated characteristics of spatial 
distribution of passenger flows as the average 
trip distance, total passenger turnover and trip 
distance distribution .

2) The accuracy of the model for predicting 
the passenger flows on individual origin- 
destination segments is quite low .

Thus, the model can be used to predict the 
distribution of travel distances, but it cannot be 
used to predict the volume of individual origin- 
destination routes .
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