

НАУЧНАЯ СТАТЬЯ УДК 539.3+625.7+ 629.331 DOI: https://doi.org/10.30932/1992-3252-2022-20-5-1

Оценка боковой силы при взаимодействии колеса автомобиля с дорожной колеёй

Иван ЦУКАНОВ

Анастасия ЛЮБИЧЕВА

Денис КОВАЛЕВ

Иван Юрьевич Цуканов¹, Анастасия Николаевна Любичева², Денис Игоревич Ковалев³

- 1.2 Институт проблем механики им. А. Ю. Ишлинского Российской академии наук (ИПМех РАН), Москва,
- ³ Российский университет транспорта, Москва, Россия.
- ⊠² lyubicheva@mail.ru.

RNJATOHHA

Эксплуатация дорог в современных условиях, связанных с высокими скоростями и плотностью потоков, приводит к изнашиванию покрытия и образованию дорожной колеи. При пересечении колеи может возникать неустойчивость движения, когда относительно небольшие воздействия при управлении приводят к большим изменениям траектории. Особое значение при изучении устойчивости и управляемости приобретает боковая сила, действующая на колесо автомобиля. Величина этой силы определяется различными факторами: жёсткостью шины, скоростью, изменением угла поворота колеса, геометрией поперечного профиля

Цель настоящего исследования связана с проблемой определения безопасных для движения углов наклона боковых стенок дорожной колеи при разных скоростных режимах. В работе рассмотрено взаимодействие колеса автомобиля с дорожным покрытием, предложена математическая модель

взаимодействия шины с колеёй, принимая во внимание угол набегания колеса на стенку колеи. Для описания упругого отклика шины в контакте с колеёй используется модель упругого основания и метод плоских сечений. На основе уравнений движения колеса при пересечении колеи проведена оценка боковой силы. Получены зависимости отношения боковой силы к нормальной нагрузке для различной глубины колеи и углов наклона её стенок от угла поворота колеса и скорости движения автомобиля. Показано, что при угле наклона колеи, превышающем пять градусов, боковая сила начинает существенно возрастать с ростом угла поворота колеса а также скорости движения автомобиля и может превысить приложенную нормальную нагрузку. По условию устойчивости автомобиля против заноса на мокром покрытии дана оценка предельных средних углов наклона боковых стенок колеи при различных значениях скорости движения автомобиля и углов поворота колеса.

<u>Ключевые слова:</u> автомобильный транспорт, дорожная колея, безопасность движения, автомобильное колесо, боковая сила, угол поворота колеса, жёсткость шины.

<u>Финансовая поддержка:</u> работа частично поддержана средствами государственного бюджета по государственному заданию № АААА-А20-120011690132-4.

<u> Для цитирования:</u> Цуканов И. Ю., Любичева А. Н., Ковалев Д. И. Оценка боковой силы при взаимодействии колеса автомобиля с дорожной колеей // Mup mpaнcnopma. 2022. Т. 20. № 5 (102). С. 6–12. DOI: https://doi.org/10.30932/1992-3252-2022-20-5-1.

Полный текст статьи на английском языке публикуется во второй части данного выпуска. The full text of the article in English is published in the second part of the issue.

ВВЕДЕНИЕ

Образование различных повреждений на покрытии автомобильных дорог связано прежде всего с постоянным увеличением скоростей и повышением плотности транспортных потоков. Наиболее часто среди повреждений наблюдается образование колеи на покрытии автомобильной дороги, что приводит к снижению уровня безопасности движения. При этом в момент пересечения автомобилем колеи возникают дополнительные силы, влияющие на управляемость автомобиля и устойчивость его движения. Неустойчивость проявляется, когда относительно небольшие внешние воздействия приводят к большим изменениям траектории движения [1–3], появляется опасность заноса вплоть до опрокидывания автомобиля.

В работах, исследующих устойчивость транспортного средства, в том числе при переезде через колею [1–4], изучается боковая сила, действующая на колесо автомобиля. На величину этой силы влияют различные факторы: жёсткость шины, скорость движения, изменение угла поворота колёса, геометрия поперечного профиля колеи. Геометрию поперечного профиля, как правило, характеризуют глубиной колеи^{1, 2}, не учитывая форму её поперечного сечения, также существенно влияющую на величину боковой силы. Эту форму в первом приближении количественно можно оценить средними углами наклона боковых стенок колеи.

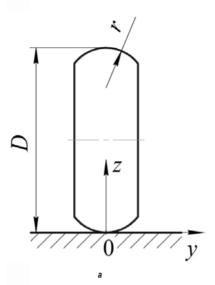
Построению аналитических моделей взаимодействия шины с колеёй на дорожном покрытии посвящены, в частности, работы [5; 6]. Так, в [5] исследована боковая устойчивость автомобиля в колее. Показано наличие колебательной неустойчивости на модели одноколейного транспортного средства при большей жёсткости задней, чем передней шины и достаточно высокой скорости движения транспортного средства. Получено аналитическое выражение, описывающее одну

Целью настоящей работы является построение математической модели взаимодействия колеса автомобиля с дорожным покрытием в случае движения по траектории, пересекающей колею. При взаимодействии с поверхностью препятствия прогибы шины меняются в зависимости от формы дорожной колеи. Это обстоятельство приводит к перераспределению контактного давления, изменению величины и направления сил реакции, возникающих между шиной и дорожным покрытием. Модель позволит провести оценку боковой силы, действующей на колесо, а также оценку предельных средних углов наклона боковых стенок колеи при различных значениях скорости движения автомобиля. Для этого в качестве критерия допустимых значений коэффициента поперечной силы будет принято условие устойчивости автомобиля против заноса на мокром покрытии [3; 7].

РЕЗУЛЬТАТЫ

Модель взаимодействия колеса автомобиля с дорогой

Деформация реальной шины происходит под действием множества факторов, зависящих от свойств материалов компонентов шины, геометрии протектора и конструкции шины, учесть которые можно при конечноэлементном моделировании для конкретных типов шин. Вследствие взаимодействия различных типоразмеров и марок автомобильных шин с дорожным покрытием, которые заранее неизвестны, для исследования влияния размеров дорожной колеи на боковую нагрузку на колесо будем применять упрощённую феноменологическую модель автомобильной шины, основанную на модели упругого основания [8]. При использовании такой упрощённой модели, для определения размеров области контакта колеса и дорожного покрытия можно использовать метод плоских сечений [8].


из границ устойчивости. Значительное количество работ посвящено изучению аквапланирования шины, обзор таких работ можно найти в [6]. В этой же работе представлен метод расчёта предельной глубины колеи, который позволяет выбирать её значения в зависимости от требований к коэффициенту сцепления шины с покрытием и скорости движения по участку дороги, от глубины слоя воды в колее и параметров шероховатости покрытия.

ои и

 $^{^1}$ ГОСТ 32825-2014. Дороги автомобильные общего пользования. Дорожные покрытия. Методы измерения геометрических размеров повреждений. – М.: Стандарт-информ, 2019. – 15 с. [Электронный ресурс]: https://docs.cntd.ru/document/1200117775. Доступ 11.10.2022.

² ГОСТ Р 50597–2017. Дороги автомобильные и улицы. Требования к эксплуатационному состоянию, допустимому по условиям обеспечения безопасности дорожного движения. Методы контроля. – М: Стандартинформ, 2017. – 27 с. [Электронный ресурс]: https://docs.cntd.ru/document/1200147085. Доступ 11.10.2022.

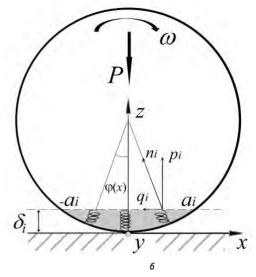


Рис. 1. Модель взаимодействия колеса с дорогой: (a) — геометрическая модель колеса; (б) — модель деформации шины в i-ом сечении [выполнено авторами].

Для определения жёсткости шины в модели рассмотрим взаимодействие автомобильного колеса с горизонтальной плоскостью. К центру колеса приложена вертикальная нагрузка P, соответствующая четвёртой части веса автомобиля. Положим, что ведомые колёса находятся в режиме свободного качения. Дорожное покрытие будем считать недеформируемым.

Введём локальную систему координат $O_{x}y_{z}$, её начало расположено в нижней наиболее выступающей точке центрального сечения колеса, ось Ox совпадает с направлением качения, Oy — параллельна оси вращения колеса. Представим наружную поверхность колеса в виде функции (рис. 1a):

$$z_1(x,y) = R + r - \sqrt{R^2 - x^2} - \sqrt{r^2 - y^2} , \qquad (1)$$

где R = D/2; D — максимальный наружный диаметр колеса;

r – радиус кривизны беговой дорожки ($r \le 1,65H$ [9]; здесь H – высота профиля [9]).

Область контакта Ω рассечём плоскостями, перпендикулярными оси вращения колеса (Oy), с равномерным шагом $\Delta y = y_{_N}/N$, где $y_{_N}$ – граница области контакта в направлении оси Oy; 2N – количество сечений области контакта.

В каждом сечении Ω_i в соответствии с указанными допущениями рассмотрим двухмерную контактную задачу, представив деформацию шины как деформацию упругого основания с радиально расположенными пружинами (рис. 16) [8].

Запишем реакцию основания, направленную радиально к поверхности, n_i и её нормальную к горизонтальной поверхности проекцию p_i :

$$\widehat{n_i}(\varphi(x), y_i) = \widehat{k_i} u_r(\varphi(x), y_i),
p_i(x, y_i) = k_i u_r(\varphi(x), y_i) \cos \varphi(x).$$
(2)

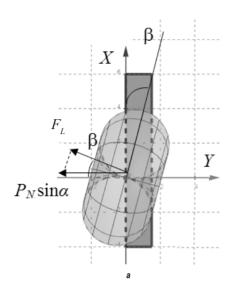
Здесь u_r — радиальное перемещение основания в точке, зависящее от угла $\phi(x)$; k_r — коэффициент радиальной жёсткости шины.

Заметим, что при симметричной области контакта касательная проекция реакции q_i в каждой точке сечения отлична от нуля, однако интегральное значение касательной компоненты реакции в каждом сечении равно нулю.

Проекции радиальных перемещений на нормальное направление в *i*-ом сечении области контакта имеют вид:

$$u_{z}(x, y_{i}) = u_{z}(\varphi(x))\cos\varphi(x). \tag{3}$$

Таким образом, нормальная к горизонтальной поверхности компонента реакции упругого основания (контактное давление) связана с вертикальными перемещениями выражением:


$$p_{x}(x, y_{x}) = k_{x}u_{x}(x, y_{x}).$$
 (4)

Деформацию поверхности (прогиб) шины при x=0, y=0 обозначим δ_0 . Условие контакта поверхностей в сечении тогда имеет вид: $z_i(x,y_i)+u_z(x,y_i)=\delta_0$. (5)

Следовательно, перемещения в i-ом сечении равны:

$$u_z(x, y_i) = \sqrt{R^2 - x^2} + \sqrt{r^2 - y_i^2} + \delta_0 - R - r,$$
 (6)

где
$$y_i = \Delta y (i - I); \Delta y = y_{\text{max}} / N, i = 1...N.$$
 (7)

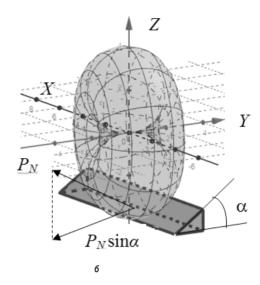


Рис. 2. Схема контакта колеса с колеёй: (а) – изометрическая проекция; (б) – вид сверху [выполнено авторами].

Обозначим деформацию в i-ом сечении выражением:

$$\delta_i = \delta_0 - r + \sqrt{r^2 - y_i^2}. \tag{8}$$

Определим полуширину области контакта в сечении a_i и границу $y_{\max} = y_N$ в направлении оси Oy, принимая во внимание, что на краях области взаимодействия давление и упругие перемещения равны нулю:

$$u_{z}(a_{i}, y_{i}) = 0, \quad u_{z}(0, y_{N}) = 0,$$

$$a_{i} = \sqrt{R^{2} - (\delta_{i} - R)^{2}},$$

$$y_{N} = \sqrt{2r\delta_{0} - \delta_{0}^{2}}.$$
(9)

Для определения величины прогиба шины на ровной дороге при отсутствии достоверных сведений о конструкции и свойствах материалов шин примем гипотезу [10; 11] о том, что большая часть работы обжатия шины расходуется на сжатие воздуха в ней. Согласно данным [10; 11] на сжатие воздуха в шине расходуются примерно 60 % полной работы при деформации шины, то есть:

$$0,6\;W=W_{\rm air},$$
 (10) где $W-$ работа, затраченная на обжатие шины;

де W – работа, затраченная на обжатие шины $W_{
m air}$ – работа по сжатию воздуха в шине.

Работу по сжатию воздуха можно определить согласно [10], как:

$$W_{
m air} = \sigma \Delta V,$$
 (11)
здесь ΔV — изменение внутреннего объёма

 $\Delta V = 0$ изменение внутреннего объёма шины;

 $\sigma-$ внутреннее давление в шине.

Величина ΔV приближённо может определяться объёмом эллиптического сегмента с полуосями, определяющими область контакта:

$$\Delta V = \frac{1}{2} \pi a_0 y_N \delta_0 = \frac{1}{2} \pi \delta_0^2 \sqrt{2R(2r - \delta_0)} . \tag{12}$$

Работу нормальной силы по деформированию колеса можно определить как:

$$W = \int_{0}^{\delta_0} Pd\delta = P\delta_0.$$
 (13)

С использованием выражений (10)–(13) получим уравнение для определения прогиба шины δ_0 :

$$\frac{1}{2}\pi\sigma\delta_{0}\sqrt{2R(2r-\delta_{0})} = 0,6P.$$
 (14)

Решение уравнения (14) имеет следующий вил:

$$\delta_0 = \frac{1}{6} \left(\frac{8r^2}{-8r^3 + \frac{3}{2} \left(9K + \sqrt{81K^2 - 96r^3K} \right)^{1/3}} + + 1,6 \left(-16r^3 - 3\left(\left(9K + \sqrt{81K^2 - 96r^3K} \right)^{1/3} \right) \right) - 4r \right), \quad (15)$$

где коэффициент K равен:

$$K = \frac{1,44P^2}{2\pi^2\sigma^2R} \ . \tag{16}$$

Коэффициент радиальной жёсткости шины в модели упругого основания определяется отношением вертикальной нагрузки и прогиба шины:

$$k_r = \frac{P}{\delta_0} \,. \tag{17}$$

Взаимодействие колеса с боковой стенкой колеи

Теперь рассмотрим контакт колеса с колеёй, моделируемой наклонной плоскостью. Допустим, что область контакта расположена целиком на склоне колеи (рис. 2).

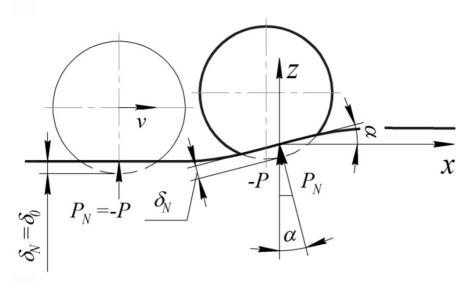


Рис. 3. Схема пересечения колеи в центральном сечении при у = 0 [выполнено авторами].

Схема контакта на рис. 2 изображена в глобальной системе координат Oxyz, совпадающей с центром колеса; ось Ox направлена вдоль ребра препятствия. Обозначим угол между наклонной плоскостью и горизонталью α , а угол «набегания» колеса на ребро препятствия β .

В локальной системе координат Oxyz сближение центра колеса с наклонной поверхностью — прогиб шины — δ_N направлен по нормали к области контакта (рис. 3), выполняются соотношения (5–9) с тем отличием, что нормальная к поверхности реакция вычисляется согласно выражению:

$$P_{N} = -P/\cos\alpha. \tag{18}$$

Боковая сила F_p действующая на колесо при наезде на наклонную плоскость (см. рис. 2), определяется проекцией нормальной реакции в пространстве:

$$F_{I} = P_{N} \sin\alpha \cos\beta. \tag{19}$$

Определение боковой силы, действующей на колесо при пересечении колеи

Рассмотрим безударный переезд колесом некоторой колеи при условии её достаточной протяжённости. В качестве профиля поперечного сечения колеи будем использовать следующую функцию:

$$z(x) = \frac{A}{2} \left(1 - \cos \frac{\pi x}{L} \right), x \in [0; L], \tag{20}$$

где A — глубина колеи;

L – ширина поперечного сечения колеи.

На практике, как правило, задаются глубина и угол наклона колеи к горизонтали α. Так как профиль колеи имеет кри-

волинейную форму, то под углом α будем понимать его максимальное значение $\alpha_{\rm m}$. Исходя из определения производной профиля, имеем:

$$tg\alpha = z'(x) = \frac{\pi}{2} \frac{A}{L} \sin \frac{\pi x}{L}.$$
 (21)

Максимальное значение производной профиля возникает в точке x = L/2 и равно 1. Тогда ширина поперечного сечения колеи будет определяться как:

$$L = \pi A / 2 \operatorname{tg} \alpha_m \sin \beta \sqrt{a^2 + b^2} .$$

С учётом поворота колеса на угол β протяжённость колеи будет меняться. Пренебрегая изменением кривизны профиля колеи, можно записать, что:

$$L = \frac{\pi A}{2 \operatorname{tg} \alpha_m \sin \beta} \ . \tag{22}$$

Упругий отклик шины, выступающей в качестве упругой связи, жёсткостью $k_{_{\! P}}$ происходит в нормальном направлении к поверхности колеи. Рассматривая модель колебаний центра колеса с одной массой [12] при действии возмущающей силы — $P_{_{\! N}}$ и без учёта трения в контакте, уравнение движения центра колеса по нормали к поверхности колеи имеет вид:

$$m\ddot{\delta}_N = -k_r \delta_N - P_N \ . \tag{23}$$

Силу реакции со стороны дороги на элементарной наклонной площадке с углом α , который, в свою очередь, зависит от координаты x, можно записать, как $P_N = -P/\cos\alpha$ (x). С учётом того, что x = vt, где v – горизонтальная скорость центра колеса, запишем:

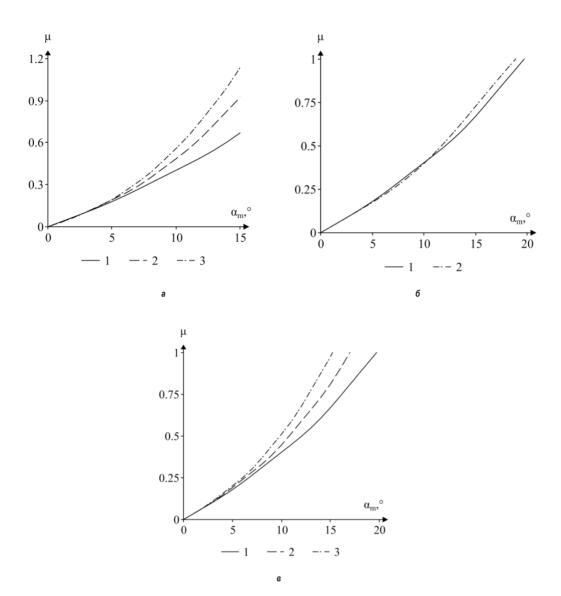


Рис. 4. Зависимость отношения максимального значения боковой силы к нормальной нагрузке на колесо μ от максимального угла наклона профиля колеи к горизонтали α_m : (a) — при A=50 мм, v=60 км/ч, $1-\beta=10^\circ$; $2-\beta=20^\circ$; $3-\beta=30$; (б) — при $\beta=10^\circ$, v=60 км/ч, 1-A=50 мм; 2-A=100 мм; (в) — при $\beta=10^\circ$, A=50 мм, 1-v=60 км/ч; 2-v=90 км/ч; 3-v=120 км/ч [выполнено авторами].

$$z(t) = \frac{A}{2} \left(1 - \cos \gamma vt \right) \,, \tag{24}$$

где $\gamma = (2tg\alpha_m \sin\beta)/A$.

Выразив косинус угла α через производную функции профиля колеи, равную tgα, и используя тригонометрические тождества, получим:

$$m\ddot{\delta}_N = -k_r \delta_N + P \sqrt{1 + 0.5A\gamma v \sin \gamma vt} . \tag{25}$$

Решение уравнения (25) имеет вид [13]:

$$\delta_N(t) = \frac{P}{mf} \int_0^t \sqrt{1 + \left(0.5A\gamma v \sin \gamma v \tau\right)^2} \sin f(t - \tau) d\tau, \quad (26)$$

здесь $f = \sqrt{k_r / m}$ — круговая частота свободных колебаний колеса.

Интеграл в выражении (26) не вычисляется аналитически, поэтому его значения будем определять численно. В действительности нас интересует значение максимальной динамической силы $P_{N_{\max}} = -k_{,\bullet} \delta_{N_{\max}}$. Расчёты показывают, что максимум нормальной деформации шины достигается при $t \approx \pi/f$. С учётом формулы (19) можно получить максимальное значение отношения боковой силы к вертикальной нагрузке μ при выезде колеса из колеи:

$$\mu = \frac{F_{I_{\text{max}}}}{P} = \frac{\delta_N \pi}{\delta_0 f} \sin \alpha \cos \beta . \tag{27}$$

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

На рис. 4 показаны графики зависимостей параметра μ от угла наклона колеи α , под которым подразумевается его максимальное значение для профиля колеи (20): $\alpha_{\rm m}$. Расчёты выполнены для следующих исходных данных, типичных для легковых автомобилей: максимальный наружный диаметр колеса (шины) $D=520~{\rm mm}$; высота профиля шины $H=100~{\rm mm}$ (соотношение между высотой профиля и шириной шины $-50~{\rm mm}$); радиус кривизны беговой дорожки r=1,3~H.

Результаты расчётов, приведённые на рис. 4, показывают, что изменения факторов, таких как скорость движения автомобиля и угол поворота колеса, практически не влияют на параметр μ при $\alpha_{\rm m} < 5^\circ$. При таком малом значении угла наклона профиля колеи максимальная боковая сила не превосходит 25 % приложенной нагрузки на колесо.

При большем угле наклона колеи боковая сила начинает существенно возрастать с ростом угла поворота колеса и скорости движения автомобиля и может превысить приложенную нагрузку. Поэтому при большом угле наклона колеи (препятствия) угол поворота колеса и скорость автомобиля должны быть минимально допустимыми, что подтверждается практикой вождения.

Глубина колеи, по данным приведённых расчётов, оказывает меньшее влияние на величину μ с ростом α_m , что может быть связано с допущениями, принятыми в модели, в частности, такими как одноточечный контакт, одномерная упругая модель шины, пренебрежение трением и откликом упругой системы автомобиля.

Следует также отметить, что с ростом глубины колеи рассмотренная безударная модель динамического взаимодействия может быть неприменима вследствие возможного отрыва колеса от поверхности препятствия.

ЗАКЛЮЧЕНИЕ

Построенная аналитическая модель взаимодействия колеса автомобиля с дорожным покрытием при преодолении дорожной колеи позволяет в первом приближении и в отсутствие детальных данных о конструкции шины, параметрах автомобиля оценить значение боковой силы, воздействующей на колесо в зависимости от основных параметров автомобиля и колеи. Модель упругой шины также может быть встроена в более сложные динамические модели автомобиля для учёта движения по неровным дорожным покрытиям.

СПИСОК ИСТОЧНИКОВ

- 1. Ротенберг Р. В. Подвеска автомобиля и его колебания. -2-е изд., перераб. и доп. М.: Машгиз, 1960.-356 с.
- 2. Певзнер Я. М. Теория устойчивости автомобиля. М.: Машгиз, 1947. 156 с.
- 3. Чудаков Е. А. Теория автомобиля. 3-е изд., перераб. и доп. М.: Машгиз, 1950. 344 с. [Электронный ресурс]: https://www.chipmaker.ru/files/file/17937/ [ограниченный доступ для подписчиков].
- 4. Лушников Н. А., Лушников П. А., Ковалев Д. И. Об определении допустимых углов наклона боковых стенок колеи по условию устойчивости автомобиля против заноса на мокром покрытии // Дороги и мосты. −2022. № 1 (47). С. 152–160. [Электронный ресурс]: https://rosdomii.ru/upload/iblock/187/5dirodkm7wqm9sp7xba3jwu6yno8qxqt/10.-Lushnikov-N.A.pdf. Доступ 12.09.2022.
- 5. Besselink, I. J. M., Achrifi, S., Nijmeijer, H. Lateral Vehicle Dynamics on Rutted Roads. Advances in Dynamics of Vehicles on Roads and Tracks. IAVSD 2019. Lecture Notes in Mechanical Engineering. Springer, 2020, pp. 1242–1251. DOI: https://doi.org/10.1007/978-3-030-38077-9 143.
- 6. Александров А. С., Семёнова Т. В. Метод расчёта предельной глубины колеи для безопасного движения // Вестник Сибирского государственного университета путей сообщения. -2022. № 1. С. 104—116. DOI: 10.52170/1815-9265 2022 60 104.
- 7. Федотов Г. А., Поспелов П. И. Изыскания и проектирование автомобильных дорог. М: Высшая школа, 2009. 648 с. ISBN 978-5-06-006056-0.
- 8. Джонсон К. Механика контактного взаимодействия. М.: Мир, 1989. 510 с. ISBN 5-03-000994-9.
- 9. Мозгалёв В. В., Липлянин П. К., Расчёт и конструирование резиновых изделий и форм. – Минск: БГТУ, 2010. – 149 с.
- $10.\,\mathrm{Бидерман}\,B.\,\mathrm{JI}.\,\mathrm{Автомобильные}$ шины. М.: Госхимиздат, 1963.-384 с.
- Работа автомобильной шины / Под ред. В. И. Кнороза. – М.: Транспорт, 1976. – 238 с.
- 12. Пановко Я. Г. Основы прикладной теории колебаний и удара. 3-е изд., доп. и переработ. Л.: Машиностроение (Ленингр. отд-ние), 1976. 320 с.

Информация об авторах:

Цуканов Иван Юрьевич – кандидат технических наук, старший научный сотрудник лаборатории трибологии Института проблем механики им. А. Ю. Ишлинского Российской академии наук (ИПМех РАН), Москва, Россия, ivan.yu.tsukanov@gmail.com. **Любичева Анастасия Николаевна** – кандидат физико-математических наук, старший научный сотрудник лаборатории трибологии Института проблем механики им. А. Ю. Ишлинского Российской академии наук (ИПМех РАН), Москва, Россия, lyubicheva@mail.ru.

Ковалёв Денис Игоревич — преподаватель-исследователь Российского университета транспорта, Москва, Россия, kov_deni@mail.ru.

Статья поступила в редакцию 29.09.2022, одобрена после рецензирования 02.11.2022, принята к публикации 04.11.2022.

Мир транспорта. 2022. Т. 20. № 5 (102). С. 6–12