

НАУЧНАЯ СТАТЬЯ

УДК 625.5 DOI: https://doi.org/10.30932/1992-3252-2022-20-4-2

Оптимизация аэродинамической формы монорельсового подвесного юнибуса

Анатолий ЮНИЦКИЙ

Сергей АРТЮШЕВСКИЙ

Михаил ЦЫРЛИН

Анатолий Эдуардович Юницкий ¹, Сергей Владимирович Артюшевский ², Михаил Иосифович Цырлин ³
^{1,2,3} 3AO «Струнные технологии», Минск, Беларусь.

⊠ ³ m.tsirlin@unitsky.com.

RNJATOHHA

В статье описана аэродинамическая оптимизация формы монорельсового подвесного юнибуса струнного транспорта. Изучалось влияние геометрических и конструктивных элементов на аэродинамические характеристики. Оценка выполнялась в сравнительном анализе показателей двух форм с дальнейшим изменением и перерасчётом дорабатываемой модели, сравнивались в первую очередь сила лобового сопротивления и коэффициент сопротивления формы. В расчётах применялась модель газовой динамики на основе уравнений Рейнольдса с использованием SST-k-ωмодели переноса сдвиговых напряжений Ментера. Для решения уравнений с целью нахождения искомых функций использовалась противопоточная схема дискретизации второго порядка с применением процедуры уточнения «давление-скорость» в рамках алгоритма SIMPLE Патанкара-Сполдинга; использовался программно-вычислительный комплекс ANSYS Fluid Dynamics. Размеры расчётной области были выбраны с учётом геометрических размеров 3D-модели формы. Идентификация граничных условий производилась в решателе. Моделирование выполнялось для случая движения транспорта с постоянной скоростью.

Расчёты показали важность и влияние геометрии переходных участков корпуса транспортного средства, обязательность применения колёсных обтекателей и преимущества S-образного хвостовика. Предложенная оптимизация конструкции позволила на 16,9 % снизить силу и коэффициент аэродинамического сопротивления. По результатам проведённых исспедований была выбрана оптимальная модель транспортного средства, обладающая наименьшим коэффициентом аэродинамического сопротивления, что позволило улучшить энергетическую экономичность системы и повысить её экологичность, как следствие — увелическа

<u>Ключевые слова:</u> струнный транспорт, юнибус, аэродинамика, модель, сила лобового сопротивления, коэффициент сопротивления формы, распределение давления по лобовой поверхности модели, оптимизация формы модели.

<u>Для цитирования:</u> Юницкий А. Э., Артюшевский С. В., Цырлин М. И. Оптимизация аэродинамической формы монорельсового подвесного юнибуса // Мир транспорта. 2022. Т. 20. № 4 (101). С. 17–26. DOI: https://doi.org/10.30932/1992-3252-2022-20-4-2.

Полный текст статьи на английском языке публикуется во второй части данного выпуска. The full text of the article in English is published in the second part of the issue.

ВВЕДЕНИЕ

Описание математической модели и методика аэродинамического расчёта

Воздействие набегающего потока воздуха со скоростью V на транспортное средство (TC) сводится к нагрузкам, непрерывно распределённым по его поверхности. Эти распределённые нагрузки приводят к результирующей аэродинамической силе, приложенной в центре давления, и аэродинамическому моменту сил вокруг центра масс. Сумма сил лобового сопротивления и подъёмной силы составляют аэродинамическую силу. Сама сила лобового сопротивления слагается из сопротивления давления и сопротивления трения [1].

При обдувании формы происходит поджатие набегающего потока воздуха с наветренной (лобовой) стороны с образованием зоны повышенного давления. Поток воздуха, обтекая контур, устремляется к его задней части. Действие сил вязкого трения вызывает нарастание динамического пограничного слоя, и в дальнейшем происходит отрыв потока воздуха от поверхности и образование вихревого следа за ним. В задней части находится зона пониженного давления, куда постоянно осуществляется подсос воздуха.

Сила сопротивления давления создаётся за счёт перепада давления воздуха на лобовую и кормовую части ТС. В свою очередь сила сопротивления трения обусловлена «прилипанием» к поверхности формы слоёв перемещающегося воздуха, вследствие чего воздушный поток теряет скорость. В этом случае величина силы сопротивления трения зависит от свойств материала, качества и состояния поверхности [2].

Омывание ТС воздухом со скоростью в пределах 150 км/ч (41,7 м/с) происходит в турбулентном режиме (число Рейнольдса $Re = 13,5 \cdot 10^6 > 10^6$). В таких случаях для решения практических задач турбулентного обтекания применяется система уравнений Рейнольдса (RANS) и неразрывности или аналогов, применяющих методы крупных вихрей – LES:

$$\begin{split} &\frac{\partial \overline{u}_{i}}{\partial x_{i}} = 0, \ \frac{\partial \overline{u}_{i}}{\partial t} + \frac{\partial \overline{u}_{j} \overline{u}_{i}}{\partial x_{j}} = \\ &- \frac{1}{\rho} \frac{\partial \overline{p}}{\partial x_{i}} + \frac{\partial}{\partial x_{i}} \Bigg[v \Bigg(\frac{\partial \overline{u}_{i}}{\partial x_{j}} + \frac{\partial \overline{u}_{j}}{\partial x_{i}} \Bigg) - \overrightarrow{u_{i} u_{j}} \Bigg], \end{split}$$

где $\overrightarrow{u_i}$, $\overrightarrow{u_j}$ – рейнольдсовы напряжения, замыкающиеся на основе гипотезы Буссинеска с помощью турбулентной вязкости v, [3].

От стандартных уравнений Навье—Стокса их отличает присутствие дополнительной турбулентной вязкости v_i , многократно превосходящей по значению молекулярную вязкость набегающего воздуха.

Согласно [4], для решения задач внешнего обтекания рекомендуется применять k- ω модели Саффмена—Вилкокса, модели Спаларта—Аллмареса, модели переноса сдвиговых напряжений Ментера и k- ε модель Лондера и Джонса для кинетической энергии турбулентных пульсаций k и скорости её диссипации ε .

Для численного решения применяется модель газовой динамики, основанная на уравнении Рейнольдса (RANS подход). В данной постановке задачи определяемыми функциями служат скорость омывания воздушными потоками поверхности юнибуса и давление на его поверхностях, предполагается изотермичность и несжимаемость (постоянство температуры и плотности) воздушного потока как среды, обтекающей транспорт [5]. Для решения уравнений Рейнольдса выбрана модель турбулентности типа SST-k- ω модели переноса сдвиговых напряжений Ментера [6; 7].

Цель работы

Целью данной работы являлось предоставление информации по аэродинамической оптимизации монорельсового подвесного юнибуса сложной геометрической формы с использованием современного программновычислительного комплекса ANSYS Fluid Flow [8; 9].

РЕЗУЛЬТАТЫ

Подготовка модели и процедура исследования аэродинамики формы

В качестве основы построения 3D-модели для проводимых расчётов был взят сборочный элемент монорельсового подвесного юнибуса струнного транспорта (рис. 1), который в дальнейшем был доработан с учётом особенностей построения расчётной сетки: внутренние элементы, не оказывающие влияние на аэродинамику, удалены, внешние элементы слиты в одну деталь, внутренние полости заполнены.

Размеры расчётной области выбирались с учётом геометрических размеров 3D-модели формы. Расчётная область представляет собой параллелепипед с геометрическими размерами 50,0 х 11,5 х 13,0 м (рис. 2).

Рис. 1. Рабочая 3D-модель формы монорельсового подвесного юнибуса [выполнено авторами].

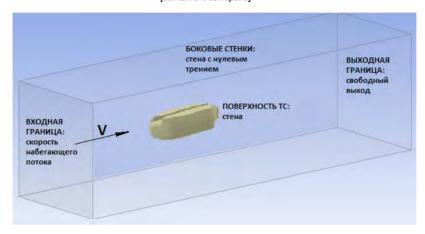


Рис. 2. Расчётная область с моделью подвесного юнибуса [выполнено авторами].

Для расчёта принята стандартная система координат: направление оси X выбрано противоположно направлению движения транспортного средства, совпадает с направлением силы сопротивления движению; ось Y – вертикальная ось, направленная вверх, совпадает с подъёмной силой; ось Z – направлена перпендикулярно оси X в горизонтальной плоскости.

Идентификация граничных условий производилась в решателе как части программного комплекса ANSYS Fluent [10]. Моделирование выполнено для случая движения транспорта с постоянной скоростью, продольная её составляющая равнялась скорости набегающего потока [11] и задавалась на входной границе: скорость набегающего потока — 41,7 м/с (150 км/ч). Омывание происходит потоком воздуха при нормальном атмосферном давлении 101325 Па и постоянной температуре, равной 15°С, интенсивность турбулентности — 5 %, масштаб турбулентности — 10. На выходной границе принимались «мягкие» граничные условия выхода. На боковых поверхностях расчётной области ставились условия стенки, но с нулевым трением (условие скольжения потока у стенки), что позволяло имитировать реальные условия неограниченной области в ограниченном пространстве [12]. Для поверхностей модели формы были приняты условия прилипания (отсутствие проскальзывания – No-slip).

Подвижной средой выбран воздух при 20° С. Размеры и тип сетки для всех расчётов приняты одинаковыми; предварительные анализы степени дробления сетки показали незначительное влияние на значение определяемого коэффициента сопротивления. Максимальное влияние определено при дроблении сетки в пристеночной зоне с использованием пограничного слоя с прогрессирующими размерами первой ячейки и адаптации сетки путём её дробления в два раза. В расчёте принята адаптация по числу y+ со значением один. При y+ = 1 сетка стремится к ситуации, когда в пристеночном слое формиру-

Рис. 3. Модель № 1 [выполнено авторами].

ется несколько расчётных узлов. Это позволяет учесть влияние пограничного слоя. Каждая адаптация сетки измельчала в два раза пристеночную зону. В расчёте провели четыре адаптации, приближающих y+ к единице. После четвёртой адаптации результат искажается, дальнейшее дробление сетки теряет смысл. Предположительно, это связано с численной ошибкой, так как размеры адаптивной сетки при уменьшении в два раза меняются более чем на 20 %, что приводит к искажению полученных результатов. В качестве допущения принято отсутствие эффекта сжимаемости воздуха. Существенное проявление эффекта сжимаемости появляется при числе Маха больше 1/3, тогда как скорость звука в воздухе при заданных условиях близка к 330 м/с, что в 2,6 раза выше расчётной скорости движения.

Для решения уравнений Рейнольдса с $SST-k-\omega$ моделью Ментера с целью нахождения искомых функций применялась противопоточная схема дискретизации второго порядка с применением процедуры уточнения «давление—скорость» по SIMPLE алгоритму Патанкара—Сполдинга [13; 14].

Инициализация производилась по параметрам потока на входной границе расчётной области.

ОЦЕНКА АЭРОДИНАМИЧЕСКИХ СВОЙСТВ

Оценка выполнялась в сравнительном анализе аэродинамических характеристик двух форм с дальнейшим изменением и перерасчётом дорабатываемой модели.

Сравнивались:

- 1. Поле распределения давления.
- 2. Сила лобового сопротивления F_{\downarrow} .
- 3. Коэффициент сопротивления формы $C_{...}$
- 4. Наличие турбулизированных потоков. Расчёт определения силы и коэффициента

Рис. 4. Модель № 2 [выполнено авторами].

аэродинамического сопротивления проводился в программе ANSYS Fluent.

Как известно, поле давления определяет аэродинамическое сопротивление ветру любой конструкции; набегающий поток создаёт зону повышенного давления на передней поверхности; максимум давления соответствует точке наибольшего торможения потока воздуха.

Миделево сечение во всех моделях сохранялось одинаковым; длина изменялась в диапазоне от 4,85 до 5,03 м.

Первая пара сравниваемых моделей определяла исходные характеристики и показывала влияние хвостового *S*-образного обтекателя: в первой модели была применена комбинация «нос–хвост» (рис. 3), во второй – «носнос» (рис. 4).

Результаты расчётов для модели № 1 и № 2 представлены в табл. 1.

Результат получился противоположным от ожидаемого — у модели $N \ge 2$, несмотря на отсутствие хвостового S-образного обтекателя, форма более аэродинамичная.

После анализа и сравнения результатов двух расчётов стало видно резкое падение давления на боковой поверхности модели № 1 в месте, где начинается радиус заднего обтекателя (рис. 5). В этом же месте у модели № 2 наблюдаются незначительные изменения давления (рис. 6).

Сравнив геометрию этих элементов, необходимо отметить (рис. 7), что желание укоротить хвостовой обтекатель у модели № 1, увеличив прямолинейный участок салона, приводит к уменьшению переходного радиуса и к срыву потока с ухудшением аэродинамических характеристик по сравнению с моделью № 2, несмотря на его короткий обтекатель и наличие донного сопротивления из-за «тупого» хвоста.

Мир транспорта. 2022. Т. 20. № 4 (101). С. 17-26

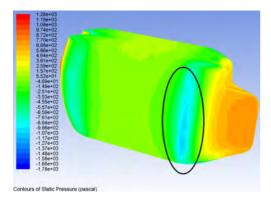


Рис. 5. Распределение давления по поверхности модели № 1 [выполнено авторами].

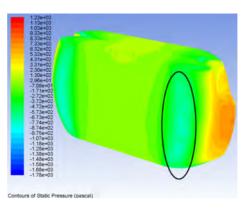


Рис. 6. Распределение давления по поверхности модели № 2 [выполнено авторами].

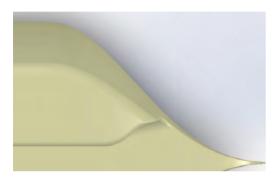


Рис. 7. Сравнение геометрии моделей № 1 и № 2 [выполнено авторами].

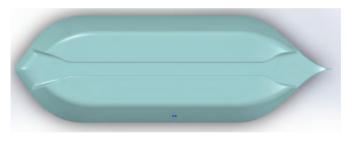


Рис. 8. Изменение геометрии заднего обтекателя в моделях № 3 и № 4 [выполнено авторами].

Рис. 9. Модель № 3 [выполнено авторами].

Рис. 10. Модель № 4 [выполнено авторами].

Таблица 1 [выполнена авторами]

Tuotinga T [BBinotinena aBTopamin				
Номер модели	F_{x} , H	$C_{\rm x}$		
№ 1	330	0,095		
№ 2	302	0,086		

Таблица 2 [выполнена авторами]

Номер модели	$F_{\rm x}$, H	$C_{\rm x}$
№ 3	296	0,0845
№ 4	372	0,1065

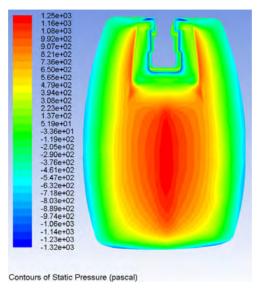


Рис. 11. Распределение давления по лобовой поверхности модели № 3 [выполнено авторами].

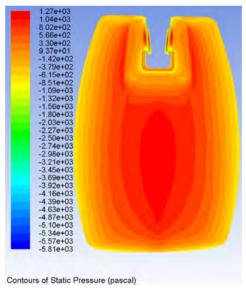


Рис. 12. Распределение давления по лобовой поверхности модели № 4 [выполнено авторами].

Рекомендацией для улучшения коэффициента сопротивления следующих моделей служит увеличение переходного радиуса в хвостовом обтекателе.

В моделях № 3 и № 4 были учтены результаты предыдущих расчётов, увеличен переходной радиус в хвостовом обтекателе (рис. 8) и проведено сравнение влияния открытых и закрытых колёс.

В модели № 3 колёса полностью закрыты обтекателями (рис. 9), в модели № 4 колёса выступают за пределы обтекателей (рис. 10).

Результаты расчётов для модели № 3 и № 4 представлены в табл. 2.

Расчёт показал значительное ухудшение коэффициента аэродинамического сопротивления (на 26 %) при открытых колёсах.

Рис. 13. Модель № 5 [выполнено авторами].

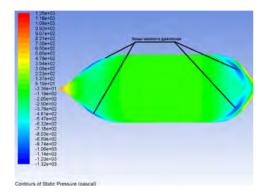


Рис. 15. Распределение давления по днищу транспортного средства модели № 3 [выполнено авторами].

Лобовые, боковые и хвостовые поверхности моделей (рис. 11, 12) подвержены одинаковому давлению, при этом модель № 4 выглядит более «красной» из-за падения нижнего предела давления с -1,32e + 03 до -5,81e + 03, в результате чего «зелёная» зона сместилась вверх по шкале; разницу создаёт рельсовый тоннель и колёса.

Вывод однозначен: колёса необходимо закрывать обтекателями.

В моделях № 5 и № 6 учтены результаты предыдущих расчётов, в качестве улучшения аэродинамики изменён переход переднего и заднего обтекателя к днищу (рис. 13, 14) и проведено повторное сравнение влияния хвостового S-образного обтекателя.

Результаты расчётов для модели № 5 и № 6 представлены в табл. 3.

Таблица 3 [выполнена авторами]

Номер модели	F_{x} , H	$C_{\rm x}$
№ 5	273	0,0780
№ 6	278	0,0795

Рис. 14. Модель № 6 [выполнено авторами].

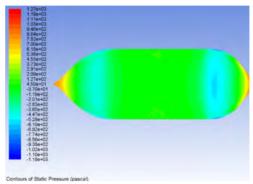


Рис. 16. Распределение давления по днищу транспортного средства модели № 5 [выполнено авторами].

Расчёт показал положительное влияние плавного перехода от носового и хвостового обтекателей к днищу; из-за отсутствия резкого перехода практически пропали зоны низкого давления, вызывающие срыв потоков с турбулизацией воздуха (рис. 15, 16).

В лобовой части уменьшилась зона высокого давления (рис. 17), снизив составляющую силы сопротивления давления. Следует отметить уменьшение нижнего предела давления, что также положительно сказывается на аэродинамических характеристиках.

Распределение давления в хвостовой части практически одинаково, за исключением донного сопротивления у модели № 6, обусловленного «тупым хвостом» и пересечением двух потоков с боковых поверхностей. В модели № 5 за счёт S-образного хвостовика

Таблица 4 [выполнена авторами]

Номер модели	F_{x} , H	$C_{\rm x}$
№ 7	274	0,0782
№ 8	272	0,0778

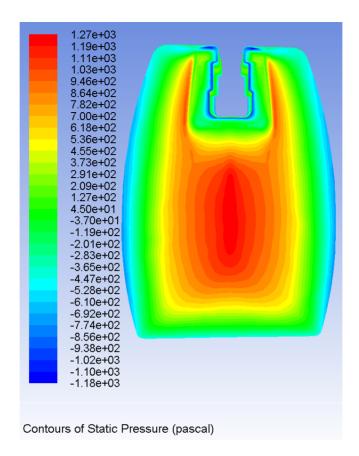


Рис. 17. Распределение давления по лобовой поверхности моделей № 5 и № 6 [выполнено авторами].

Рис. 18. Модель № 7 [выполнено авторами].

Рис. 19. Модель № 8 [выполнено авторами].

потоки не пересекаются, а выходят параллельно, что с учётом симметричности модели создаёт сонаправленные потоки воздуха, движущиеся с одинаковой скоростью, эти приёмы уменьшают, а местами полностью исключают образование вихревых дорожек Кармана.

Модель № 7 представляет собой модель № 5, повёрнутую на 180° (рис. 18) (определение аэродинамических характеристик при движении задним ходом); в модели № 8 применена комбинация «хвост—хвост» (рис. 19).

Результаты расчётов для модели № 7 и № 8 представлены в табл. 4.

Расчёты показали, что увеличение силы аэродинамического сопротивления при движении задним ходом на данных скоростях составило 0,25 %; можно сказать, что транспортные средства с формой модели № 5 и № 7 способны передвигаться вперёд/назад с одинаковыми аэродинамическими характеристиками на скоростях V = 41,7 м/с.

Расчёт модели № 8 показал незначительное улучшение аэродинамических характеристик (те же 0.25 %), поэтому в следующих

Мир транспорта. 2022. Т. 20. № 4 (101). С. 17-26

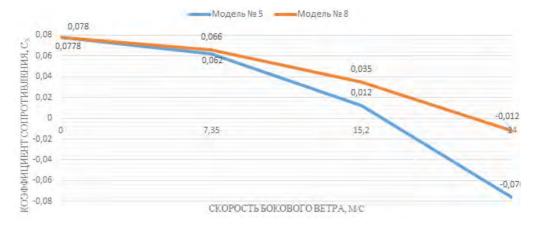


Рис. 20. Зависимости коэффициента сопротивления С_х от скорости бокового ветра [выполнено авторами].

Рис. 21. Зависимости силы сопротивления $F_{_{\chi}}$ от скорости бокового ветра [выполнено авторами].

расчётах с учётом боковых ветров сравнивались формы, показавшие наилучшие результаты, − модели № 5 и № 8.

Для определения характеристик с учётом влияния бокового ветра поворачивалась расчётная зона продувки относительно транспортного средства и системы координат на угол 10, 20 и 30 градусов, что соответствовало скорости бокового ветра 7,35; 15,2 и 24 м/с соответственно. Скорость набегающего потока как равнодействующая величина приня-

ла значения $V_{10}=42{,}34\,$ м/с, $V_{20}=44{,}37\,$ м/с и $V_{30}=48{,}15\,$ м/с.

Как отдельная характеристика, необходимая для определения ветровых нагрузок на путевую структуру, была определена сила и коэффициент сопротивления формы неподвижного транспортного средства при ветре, направленном под углом 90° со скоростью $V_{\circ \circ} = 24$ м/с.

Результаты расчётов для модели № 5 и № 8 представлены в табл. 5 и графически на рис. 20 и 21.

Таблица 5 [выполнена авторами]

Номер модели	Скорость ветра 7,35 м/с, скорость ТС 41,7 м/с		Скорость ветра 15,2 м/с, скорость ТС 41,7 м/с		Скорость ветра 24 м/с, скорость ТС 41,7 м/с		Скорость ветра 24 м/с, скорость ТС 0 м/с	
	F _{x10} , H	C_{x10}	F _{x20} , H	C_{x20}	F_{x30} , H	C_{x30}	F ₉₀ , H	C_{x90}
№ 5	225	0,062	46,5	0,012	-354	-0,076	2229	0,652
№ 8	239	0,066	139	0,035	-56	-0,012	2430	0,699

[•] Мир транспорта. 2022. Т. 20. № 4 (101). С. 17-26

Как показали результаты расчёта, модель № 5 за счёт закруглённого переднего обтекателя имеет лучшие характеристики несмотря на более высокие показатели коэффициента и силы сопротивления при нулевом значении скорости бокового ветра. У модели № 8 – плоский лопатообразный нос, который при боковом ветре является своеобразным парусом, ухудшая обтекание набегающими потоками воздуха, и увеличивает силу воздействия ветровых нагрузок на путевую структуру.

Отрицательные значения коэффициента сопротивления C_x и силы F_x для неподвижного транспорта связаны с изменением разности зон высокого и низкого давления в передней и задней зонах в принятой системе координат, с геометрическими особенностями формы транспортных средств, что видно по меньшему влиянию у симметричной модели № 8.

выводы

В процессе исследования была проведена последовательная оптимизация сложной геометрической формы корпуса монорельсового струнного транспортного средства – юнибус. Расчёты показали важность и влияние геометрии переходных участков корпуса, обязательность применения колёсных обтекателей и преимущества S-образного хвостовика. Все эти факторы с различной степенью влияют на величину суммарного аэродинамического сопротивления движению транспорта. При этом предложенная оптимизация конструкции позволяет на 16,9 % снизить силу и коэффициент аэродинамического сопротивления. По результатам проведённых исследований выбрана оптимальная модель транспортного средства, обладающая наименьшим коэффициентом аэродинамического сопротивления. Это позволило улучшить энергетическую экономичность системы и повысить её экологичность, как следствие - увеличить потенциальную рентабельность перевозочного процесса.

СПИСОК ИСТОЧНИКОВ

- 1. Мхитарян А. М. Аэродинамика. М.: Эколит, 2013. 448 с. ISBN 978-5-4365-0050-8.
- 2. Квасновская Н. П., Квасновский А. С. Аэродинамика современных легковых автомобилей // Автотранспортное предприятие. 2006. № 3. С. 51–55.
- 3. Wilcox, D. C. Turbulence modeling for CFD. 3rd ed. DCW industries, 2006, 522 p. ISBN 978-1-928729-08-2 (1-928729-08-8).
- 4. Белов И. А., Исаев С. А. Моделирование турбулентных течений: Учеб. пособие. СПб: Балт. гос. техн. ун-т. 2001.-108 с.
- 5. Молчанов А. М. Термофизика и динамика жидкости и газа. М.: МАИ, 2019. 152 с. [Электронный ресурс]: https://k204.ru/downloads/text2019.pdf. Доступ 24.05.2022.
- 6. Menter, F. R., Kuntz, M., Langtry, R. Ten Years of Industrial Experience with the SST Turbulence Model. Turbulence, heat and mass transfer, 2003, Vol. 4, No. 1, pp. 625–632. [Электронный ресурс]: https://www.researchgate.net/publication/228742295_Ten_years_of_industrial_experience_with_the_SST_turbulence_model. Доступ 24.05.2022.
- 7. Снегирёв А. Ю. Высокопроизводительные вычисления в технической физике. Численное моделирование турбулентных течений: Учеб. пособие. СПб.: СПбПУ, 2009. 143 с. ISBN 978-5-7422-2317-7.
- 8. Юницкий А. Э. Струнные транспортные системы: на Земле и в Космосе. Силакрогс: ПНБ-принт, 2019. 576 с. ISBN 978-985-90498-1-1.
- 9. Юницкий А. Э., Гарах В. А., Цырлин М. И. Струнный транспорт для городских перевозок пассажиров // Наука и техника транспорта. -2021.-№ 3.- С. 19-25. DOI: $10.53883/20749325_2021_03_19.$
- 10. Пастухов Д. Ф., Волосова Н. К., Пастухов Ю. Ф. Построение нестационарных моделей в оболочке ANSYS FLUENT: Учеб. пособие. Новополоцк: ПГУ, 2018. 46 с. [Электронный ресурс]: https://elib.psu.by/bitstream/123456789/22092/3/Построение%20нестационарных%20моделей%20в%20оболочке%20Fluent%20 WORKBENCH.pdf. Доступ 24.05.2022.
- 11. Андрейчик А. Ф., Шмелёв А. В., Харитончик С. В. Влияние межзвенного пространства на аэродинамику многозвенного автопоезда // Актуальные вопросы машиноведения. 2015. № 4. С. 121—124. [Электронный ресурс]: https://elibrary.ru/item.asp?id=29305331. Доступ 24.05.2022.
- 12. Высоцкий М. С., Евграфов А. Н. Аэродинамика колёсного транспорта. Минск: Белавтотракторостроение, 2001. 363 с. ISBN 985-6637-03-1.
- 13. Патанкар С. В., Сполдинг Д. Б. Тепло- и массообмен в пограничных слоях. М.: Энергия, 1971. 128 с.
- 14. Миньков Л. Л., Моисеева К. М. Численное решение задач гидродинамики с помощью вычислительного пакета Ansys Fluent. Томск: STT, 2017. 122 с. ISBN 978-5-93629-594-2. [Электронный ресурс]: https://elibrary.ru/item.asp?id=29806159. Доступ 24.05.2022.

Информация об авторах:

Юницкий Анатолий Эдуардович – председатель совета директоров и генеральный конструктор ЗАО «Струнные технологии», Минск, Беларусь, а@unitsky.com.

Артюшевский Сергей Владимирович – заместитель генерального конструктора по науке 3AO «Струнные технологии», Минск, Беларусь, s.artyushevskiy@unitsky.com.

Цырлин Михаил Иосифович – кандидат технических наук, ведущий специалист научно-исследовательского отдела 3AO «Струнные технологии», Минск, Беларусь, т.tsirlin@unitsky.com.

Статья поступила в редакцию 04.04.2022, одобрена после рецензирования 06.09.2022, принята к публикации 10.09.2022.

• Мир транспорта. 2022. Т. 20. № 4 (101). С. 17-26