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Background. To create modern designs of tank 
cars it is necessary to implement in practice more 
advanced engineering calculations, measurement 
methods of loading of tank shells by the action of 
various dynamic forces generated during operation 
and shunting operations. In the latter case the most 
heavily loaded part of the tank shell is its bottom, the 
maximum pressure to which from liquid cargo at certain 
impact speeds is determined by the magnitude of 
hydraulic impact. Given that shunting operations, de­
spite the requirements of technical operation rules, for 
several reasons are still performed in excess of the 
impact speed, the magnitude of this pressure is quite 
high.

Collisions at high speeds lead often to damage to 
the cars. Damage resulting in spillage of dangerous 
goods transported in tanks is harmful to the environ­
ment and may pose a threat to human life or health.

Objective. The objective of the authors is to inves­
tigate loading of tank shell at hydraulic impact.

Methods. The authors use general engineering 
methods, finite element method, nonlinear differential 
equations of hydrodynamics with derivatives, method 
of characteristics, simulation.

Results.
Research methods. From a mathematical point 

of view the movement of the liquid in the tank shell is 
described by a system of nonlinear differential equa­
tions of hydrodynamics with derivatives, analytical 
solutions for which in some cases are still pending. 
Therefore, in engineering practice methods are used, 
based on the use of hypotheses, simplifying the initial 
construction. These equations are solved by spectral 
or numerical methods. In addition, methods based on 
the model of mechanical liquid cargo analogue are 
commonly used [1, 2]. Influence of fluid on dynamics 
and loading of the tank shell is taken into account by 
means of hydrodynamic coefficients determined by a 
variety of theoretical and semi­empirical methods. 
Calculation of coefficients is quite complex and, of 
course, we have to correct them when changing the 
filling level of the tank shell.

In applied mathematics various numerical methods 
for solving nonlinear equations of hydrodynamics are 
developed. Some of them are the basis for commercial 
software packages, the most famous of which are 
STAR­CD, FLUENT, ANSYS CFX and domestic FlowVi­
sion.

Works of scientists of Belarusian State University of 
Transport (Gomel) are known, which used the method 
of solving the problem of railway tank shells loading 
described in [3, 4]. However, it requires significant 

computational resources; otherwise the time required 
for calculation will be significant. In other words, in de­
signing process requiring multivariate calculations, this 
method becomes very time consuming.

In MIIT at the department of Cars and cars facilities 
for simulation of fluid motion in the tank shell a hydraulic 
approach was used, based on the equations of «shallow 
water», the integration of which was performed by the 
method of characteristics [5, 6]. Using this method per­
mits to avoid the above mentioned problems. This article 
uses the same approach, but in integration of equations 
a variational method was applied.

The calculation of the structural strength of the tank 
shell will be performed using finite element method 
(hereinafter referred to as FEM), the most effective in our 
opinion among existing methods.

Tasks. To achieve this goal, two main tasks were 
solved.

a) Study of the impact of liquid cargo in the form of 
pressure on the tank car’s shell bottom during shunting 
collisions at different speeds, which involves: 1) simulation 
of collisions of tanks during shunting operations; 2) 
simulation of shock absorbers of absorbing devices 
mounted on the car; 3) simulation of the behavior of liquid 
cargo in a tank car’s shell; 4) simulation of hydraulic im­
pact occurring in the tank shell under certain conditions.

b) A study of stress­strain state (hereinafter SSS) of 
tanks’ shell bottoms, involving as input values previously 
determined pressure values that involve the creation of 
computational model of the tank shell and the study of its 
expected properties in the action of the applied load.

Simulation of the collision of a tank car
Several options of shunting collision of a tank car were 

considered: a stroke of a tested tank car into a fixed non­
deformable stop (scheme № 1), a stroke of a tank car 
into a stop through an intermediate car (scheme № 2), 
and a stroke into a free­standing car on a straight section 
of track (scheme № 3).

Shunting collision of cars was represented by single­
mass models, connected by elastic links. It was taken into 
account that draft gears are installed in series with elastic 
elements of cars, that is, elastic properties of the structure 
were shown when absorbing devices were closed. It was 
also assumed that the deformation of cars elements obey 
Hooke’s law. The inertia forces of parts of intercar links 
and viscous friction in relations were not taken into ac­
count. The action of liquid cargo on the tank car shell was 
set via the magnitude of horizontal projections of the total 
pressure of the liquid on left and right bottoms.

Reactions of connections were determined by the 
dependencies that characterize the work of shock ab­
sorber of absorbing device mounted on the car.
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Simulation of shock absorbers
Currently, all domestic tanks for transportation of 

dangerous goods must be equipped with absorbing 
devices of the class not lower than T2 according to OST 
32.175­2001. We have modeled the work of two such 
devices produced by «LLMZ­KAMAH»: 73ZW class T2 
with a constructive course of 90 mm and 73ZWU2 class 
T3 with a constructive course of 110 mm.

We used a mathematical model proposed in [5]. It is 
built by analyzing the properties of a shock absorber of 
absorbing device and takes into account the force of 
initial tightening, elastic properties of the shock absorber, 
dry friction and viscous friction (due to overflow of elas­
tomer in compression of absorbing device).

The mathematical model parameters were deter­
mined on the basis of experimental power characteristics 
of the device according to VNIIZhT data [5].

Simulation of liquid cargo vibrations
In a collision of a single tank with another car the 

magnitude of forces acting on the tank shell is affected 
mainly by longitudinal oscillations of liquid cargo. There­
fore, it is appropriate to consider only the longitudinal 
motion of the liquid in the tank shell. A mathematical 
model of an oscillating liquid in the tank shell is based on 
the equations of the theory of «shallow water» at the as­
sumption that the liquid is ideal and incompressible, with 
constant density [7]:
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longitudinal movement of the fluid, the same in all 
points of cross­section in accordance with the theory 
of «shallow water»; h=h(x, t) is equation of free surface 
of liquid; h

0
 is level of free surface of liquid in an 

undisturbed condition; g is acceleration of gravity; x 
is longitudinal coordinate of a tank shell; t is time.

The initial conditions are as follows: t = 0; v = 0; w = 0.
To solve a system of equations a variational method 

[7] was applied, so that the system (1) splits into m sepa­
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Based on the type of initial conditions (5), the equa­
tions (4) will have solutions, identically equal to zero. 
Therefore, solutions for equations (3) were sought by 
numerical Euler method.

Simulation of hydraulic impact
In determining the hydrodynamic loading of the tank 

shell in a mathematical model of oscillations of liquid 

cargo the value of hydraulic impact pressure was taken 
into account. The results of the study of the distribution 
of pressure change in liquid cargo in railway tank shell at 
hydraulic impact were published in [8]. The solution of 
differential equations of hydraulic impact, obtained by 
N. E. Zhukovsky was applied:

hi bP u cρ= , (6)

where u
b
 is rate of flow of fluid to the border of filled 

area, equal in absolute value to speed of border 
movement and aimed in the opposite direction; с is 
speed of movement of wave surface; ρ is fluid density.
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where Е
f
 is modulus of volume elasticity of fluid; Е is 

modulus of elasticity of the tank shell material; D is 
inner diameter of the cylindrical part of the tank shell; 
e is thickness of walls of the tank shell.

The results of collision simulation
Mathematical model of shunting collision of a railway 

tank in view of oscillations of liquid cargo is implemented 
in a software application created in integrated environ­
ment of Borland C ++ Builder.

The reliability of the results of the application of the 
program is confirmed by comparison with experimental 
results and calculations of other authors [1, 2]. The 
similarity of the results can be considered satisfactory.

The program has been used to study the shunting 
collision of a tank model 15­1443 for transportation of 
gasoline and light oil products in three variants of 
schemes.

The tank had a statutory filling 98%, and the car in 
stay bar (scheme № 2) and free­standing car (scheme 
№ 3) were assumed to be filled (gross weight of 92 tons). 
In calculations a tank shell was considered, which was 
filled with oil density ρ = 827 kg/m3, for which the volume 
elasticity modulus Е

f
 = 2100 MPa. Impact speed varied, 

at the same time as absorbing devices were used models 
class T2 and T3­73ZW and 73ZWU2.

According to the results of calculations dependencies 
of maximum effort into automatic coupler and pressures 
of liquid cargo on the bottom of the tank from impact 
speed were obtained and analyzed. By the condition of 
the strength in the effect of the maximum longitudinal load 
[9] values of the permissible impact speed and maximum 
pressure of liquid cargo on the bottom arising at these 
speeds were determined. These data are summarized in 
Table 1.

Study of SSS of tank shell bottoms
Stress­strain state of tank shell bottoms will be de­

termined with the use of software complex MSC.NAS­
TRAN, realizing FEM [10]. The calculation scheme is a 
finite element model of the tank shell, which takes into 
account the symmetry of a transverse vertical plane, i. e. 
considered half of the capacity obtained during dissection 
of the plane. When building a finite element scheme two­
dimensional finite elements were used of quadrangular 
and triangular shape (at the pole of bottoms). The bound­
ary conditions (links) were introduced in view of the sym­
metry of the structure. A detailed description of the 
model is given in [11].

Study of SSS of tank shell bottoms was performed in 
several stages. At the first stage selection of rational 
parameters of the bottom of the tank shell was used: 
design shape (outline of the meridian), gap, thickness.

A similar study at the action of the pressure of 0,4 
MPa is illustrated in [11]. However, in accordance with 
[9], in assessing the strength of the tank shell it is neces­
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sary to perform the calculation at the maximum design 
pressure:

1 2,P P P= +  (8)

where P
1
 = 0,147 MPa is pressure of liquid vapors, 

which is taken by adjusting the value of safety valve 

for the tank model 15­1443; 2
f
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Q
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of hydraulic impact; Q
f
 is mass of fluid in the tank 

shell; Q
gr

 is gross weight of the car; S is square of 
cross­section of the bottom; N is maximum impact 
force.

Thus, for the first design mode [9] it is necessary 
to evaluate the strength of the tank shell model 15­
1443 from internal pressure:
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The calculation results showed that the depen­
dence of maximum stress in the bottom from the gap 
and the stress distribution in the bottoms with differ­
ent values   of gap obtained in [11], is preserved, but 
the magnitude of gaps are specified.

It turned out that in gap value of elliptical part of 
the bottom 0,48 m maximum equivalent stresses are 
284,8 MPa (given further quantities should be seen 
as gaps of elliptical part of the bottom). The specified 
gap value was accepted rational on the condition of 
strength.

Varying the thickness of the bottom has led to 
the fact that with the sheet thickness of 13 mm at 

the bottom with a gap of 0,45 m it is possible to 
further reduce the amount of the maximum equiva­
lent stress from 385,7 to 292,3 MPa, and thus to 
accept this version of the tank shell as rational. 
However, the question of the use of the bottoms for 
oil and gasoline tanks remains controversial, since 
it is difficult to avoid an increase in metal intensity 
of construction.

At the second stage was performed a study on 
the impact of the possible outline of the meridian of 
the bottom on SSS of tank shell under the influence 
of maximum design pressure of 0,504 MPa. In [11] 
it was proposed to describe the outline of the merid­
ian of the bottom with the equation of generalized 
superellipse, which has the form:

1,
m n

x y

a b
+ =  (9)

where a=0,48 m is optimal from the condition of 
strength gap value of the bottom; b=1,5 m is a radius 
of cylindrical part of the tank shell; m, n are positive 
numbers, larger than 1.

For the purpose of a comparative analysis op­
tions of bottoms were explored, where the meridian 
was given by the equation (9). In [11] it was shown 
that the greatest stresses at the bottom occur in 
places of a sharp change in the curvature of the 
meridian, and the most efficient on the condition of 
strength meridian option will be a curve that is close 
to an ellipse, but its curvature, cannot be disre­
garded, in the joint at the transition from the cylinder 

Table 1
Permissible impact speed and pressure on the bottom under the influence of maximum 

longitudinal load
Type of absorbing device Number of collision 

scheme
Maximum permissible 
impact speed, m/s

Pressure of hydraulic impact on 
the bottom, MPa

left right

73ZW 1 1,67 0,37 0,21

2 3,32 0,37 0,38

3 3,56 0,38 0,39

73ZWU2 1 1,97 0,37 0,21

2 3,67 0,32 0,38

3 3,94 0,36 0,38

Table 2
The dependence of volume and holding capacity from the gap of the bottom

Gap of the bottom, m Shape of the bottom Volume of the tank shell, m3 Holding capacity, t

0,48 superellipse 74,26 60,837

0,48 ellipse 73,83 60,487

0,61 ellipse 73,1 60,000

Table 3
Permissible impact speeds on the condition of tank shell strength

Type of absorbing device Number of collision 
schemes

Permissible impact 
speed, m/s

Pressure on the bottom, MPa

left right

73ZW 1 1,66 0,487 0,347

2 3,23 0,487 0,507

3 3,43 0,507 0,507

73ZWU2 1 1,96 0,507 0,347

2 3,57 0,427 0,507

3 3,83 0,477 0,507
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to the ellipsoid does not change abruptly. In this 
regard, the curves were considered, in which the 
index of m degree varied in the interval 2­3 at a 
constant n=2. For these values   of m it is character­
istic, that the curvature of the generating in the form 
of superellipse in the transition zone to the cylindrical 
section becomes zero. As a result, the most efficient 
on the condition of strength is version of the curve 
with parameters m=2,7 and n=2.

To visualize the effect of reducing the gap of the 
bottom and the shape of its meridian, for the tank 
model 15­1443 were identified such important tech­
nical and economic indicators, as the volume of the 
tank shell and the holding capacity of the car. As a 
result of the calculations shown in Table 2 were 
prepared dependences of volume and holding ca­
pacity from the gap of the bottom.

At the third stage, within the finite element 
model studies of SSS of tank shell bottom were 
conducted with a rational outline of the meridian. The 
initial data were hydraulic impact pressure values 
determined using the developed program of shunt­
ing collision. Additional accounting of liquid vapor 
pressure allowed finding the maximum allowable 
impact speed on the condition of tank shell strength 
(table 3).

Conclusions.
1. The mathematical model of shunting collision 

of tank cars was offered, which takes into account 
the ability to install automatic couplers with absorb­
ing devices of various types on the car, fluctuations 
of liquid cargo transported in the tank shell with in­
complete filling, and the emergence of hydraulic 
impact.

2. On the basis of the proposed mathematical 
model in the environment Borland C ++ Builder a 
simulation program of shunting collision of a railway 
tank filled with liquid cargo was developed.

3. Permissible impact speed of the tank with 
regulatory filling of tank shell was determined on the 
basis of the condition of strength under the action of 
the maximum longitudinal load for three collision 
schemes taking into account the possibility of install­
ing absorbing devices of various types on the tank.

4. The stress­strain state of the elliptical bottom 
of the tank shell model 15­1443 was investigated 
under the action of the internal pressure with the use 
of specialized software that implements the finite 
element method.

5. The choice of rational parameters of the bot­
tom of the tank shell was justified, the analysis of its 
possible structural forms was conducted.

6. The shape of the meridian of bottom was 
found, which allows more efficiently use the useful 
volume of the tank shell. The obtained results clari­
fy the results of previous studies.

7. Shunting impact speeds, permissible under 
the given conditions of strength, were determined.
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