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Background. In vibration studies of asynchro­
nous machines, which use magnetic suspension of a 
rotor, it is necessary to take into account the possibi­
lity of radial displacement of a rotating rotor. In this 
regard, its position in the mathematical model of the 
asynchronous or induction machine (hereinafter – IM) 
is defined by two coordinates respectively rotational 
one and radial one.

Objective. The objective of the authors is to 
develop a mathematical model of the induction ma­
chine to be applied in vibration studies.

Methods. The authors use general scientific and 
engineering methods, electrical engineering meth­
ods, mathematical methods (e. g. Laplace equation, 
Kirchhoff equation).

Results. The model is based on a representation 
of an IM in a form of infinitely long cylindrical shells 
with current layers (Pic. 1), the shells being separated 
by an air circular gap (circular with no radial displace­
ment of the rotor or eccentric if any). Thus, on the 

cylindrical shell of radius 1ρ  there is a current layer 

simulating stator windings of the induction machine, 
with a density
j
1 

= j
m1

 sin(ω
1
t – θ),

where 
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3
, Қ

2m mj I=  
1mI  is the amplitude of the phase 

current of the stator, 1 Қω is angular frequency of the 

stator current.
It is assumed that magnetic cores of stator and 

rotor (its radius is designated as ρ
2
) have an infinite 

magnetic permeability and zero conductivity.
First, we find a magnetic field in the area of air 

circular gap ρ
2
≤ ρ≤ ρ

1
. The calculation will be per­

formed for the vector potential of the magnetic field, 
which in this area has a single component А, directed 
along a cylinder and satisfying in cylindrical coordi­
nates the Laplace equation
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If we assume that A= R(ρ)×S(θ), then the equation 
(1) decomposes into two equations:
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where n2 is a constant. The solutions of those 
equations are
R = cρn+dρ­n, S = g  cos(nθ) + h sin(nθ),

then
A = (cρn+dρ­n)×[ g  cos(nθ) + h sin(nθ)].

In this equation with boundary conditions (2) a 
constant n =1, and values с, d, g  and h, which do 

not depend on variables ρ and θ, satisfy the equa­
tions
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and for the vector potential we get an equation

( )
2 2
1 2

0 2 2
1 2

cos sin  .Қc sA j j
ρ ρµ ρ θ θ

ρ ρ ρ
 

= + − + −  
 (3)

Thus, components Bρ and Bθ of magnetic induc­
tion vector (B = rot A) and scalar magnetic potential 
V (H = – grad V) will be equal to:

( )
2 2
1 2

0 2 2 2
1 2

1
1 sin cos ;c s

A
B j jρ

ρ ρµ θ θ
ρ θ ρ ρ ρ

 ∂
= = + + ∂ −  

( )
2 2
1 2

0 2 2 2
1 2

1 cos sin ;c s

A
B j jθ

ρ ρµ θ θ
ρ ρ ρ ρ

 ∂
= − = − − − + ∂ −  

( )
2 2
1 2

02 2
1 2

sin cosc sV j j V
ρ ρρ θ θ

ρ ρ ρ
 

= − − + + −  
,

where V
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is a constant. Or
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Let’s find a flux function U, using one of expres­
sions
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is a constant. Now it is possible to calculate a 
complex potential ξ

w
=U+jV of a magnetic field in the 

area of circular air gap ρ
2
≤ ρ≤ ρ

1
 in the plane w:

( ) ( )
2 2
1 2

02 2
1 2

,Қw c s c sj jj w j jj
w

ρ ρξ ξ
ρ ρ

 
= + + − + −  

 (6)

where w = ρeiθ, ξ
0
 is a constant, 1j = − .

Let’s consider a magnetic field in the area of ec­
centric air gap in the plane z (Pic. 2). Here ε is ec­
centricity, points P

1
 and P

2
 with coordinates (х

1
, 0) and 

(х
2
, 0) are symmetric with respect to both circles 

(traces of cylindrical shells), i. e.
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Function, realizing the conformal mapping of the 
eccentric gap in the circular ring, is linear fractional 
function [1] and has a form
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where λ is a constant, х
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 and х
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 are roots of the 

equation
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Therefore, the mapping function w can be written 
as
w = bejψ,  (10)

where 1

2

b
b

b
λ=  and ψ = ψ

1
–ψ

2
, those quantities being 

functions of the coordinates r and φ of the current 
point in the plane z. Bringing (10) in (6), we get an 
expression for a complex potential of the magnetic 
field in the area of eccentric gap in the plane z:
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Hence we find the correlation for flux function and 
a component of the magnetic induction in this area
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Let’s consider the expressions (13) and (14) in a 
more detailed manner.

Let’s note that the roots х
1
 and x

2
 of the equation 

(8), if the eccentricity ε is changing, vary in a very wide 
range. For example, when ε approaches its upper 
limit, i. e. when ε→ (ρ

1 
– ρ

2
), roots х

1
 and x

2
 are identi­

cal and equal to х
1 
= x

2
=½×(ρ

1
+ρ

2
+ε); in contrast, when 

ε approaches its lower limit (ε→0), one of the roots 
approaches zero, while the second root approaches 
infinity. Let’s consider a case of small eccentricity, 
when ε<<(ρ

1
–ρ

2
). Here, approximate values of roots 

of the equation (8) are given by expressions
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In this case х
2
>> r, wherein ρ

2
<<r≤ρ

1
; therefore 

we can neglect z in comparison with х
2
 and write (7) 

in a form
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w
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2
' 1

2 2
1 2
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=

−

When ε→0, obviously, w →z should take place; 

consequently, we can take λ=–x
2
. Thus, for ε<< (ρ

1 
– ρ

2
) 

Pic. 1. A case of ring circular air clearance.

Pic. 2. A case of eccentric ring circular air clearance.
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the mapping function can be approximated as follows
w = z – ε′.  (15)

In this case values b  and Ψ in (10)­(14) are equal 

to
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With account for (16) the expressions (13) and 
(14) can be written as follows:
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If the magnetic field, described by the equations 
(4) and (5), is considered as unperturbed, then the 
field, corresponding in the expressions (17) and (18) 
to components, containing ε′, should be considered 
as perturbed. In those expressions components 
without ε′ coincide with (4) and (5) and represent the 
unperturbed field. Thus, the appearance of the ec­
centricity of the rotor is accompanied by a disturbance 
of the magnetic field in the air gap of the machine. For 
a small eccentricity of the rotor when ε<<(ρ

1
–ρ

2
) 

perturbed magnetic field is rotating with a spatial 
period which is by half less than the period of the 
unperturbed field. This field rotates in the same direc­
tion as the unperturbed field at a speed equal to a half 
of the synchronous speed.

The equations (17) and (18) recorded in the refe­
rence frame xy, rigidly associated with a stator, with the 
start in the center of inertia of the stator (in the point 0 
in Pic. 3). Let’s calculate the magnetic field at the surface 
of the rotor (B

r 
and Bφ are components of magnetic in­

duction in the point N at the surface of the rotor in the 
reference frame xy). Then let’s write the results of the 

calculation (
2r

B  and 
2

Bφ ) in the coordinate system x
2
y

2
, 

stationary relative to the stator, but with the origin in the 
center of the rotor (in the point 0

2
 in Pic. 3).

The result is
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where 0
2

εε
ρ

=  is relative eccentricity.

Let’s assume that on the surface of the rotor there 
is a current layer, the density of which in the reference 
frame of the stator is given by the expression, which, 
according to our assumption, contains respectively 
unperturbed and perturbed components:
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The interaction of the magnetic field (19) and (20) 
(let’s note that this field is due to the stator current) 
with the current sheet (21) gives the ponderomotive 
force acting on the rotor. The density of this force (per 
unit of surface of the rotor), taking into account the 
fact that j
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r
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the rotor, are:
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Values 
1mj , 

2mj , mj ε
, ψ

2
 and ψε, which have been 

assumed till now to be given, are by and large un­
known. To determine them, it is necessary to use the 
equations describing electromagnetic process in the 
machine. The possibility to directly use the known 
equations of the induction machine [2] for this pur­
pose, obviously, needs to be justified. This is due to 
the fact that in this case, due to the eccentricity of the 
rotor, a disturbance of the magnetic field in the air gap 
of the machine occurs. Therefore, we need to figure 
out how this fact is reflected in the equations of the 
machine.

We first show that the equations for the values 
1mj , 

2mj  and ψ
2
 do not contain mj ε

 and ψε, and those equa­

tions, in principle, coincide with the equations of the 
induction machine, which describe electromagnetic 
processes without the eccentricity of the rotor.

Let’s write down (19) and (20) in the reference 
frame x

f 
y

f
, rigidly connected to the rotor. To do this in 

(19) and (20) we make a substitution: φ
2
 = φ

f
 + γ, where 

φ
f
 is an angular coordinate measured from the axis x

f
, 

Pic. 3. Used coordinate systems.
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dtγ ω γ= +∫ , where ω
2
 is a speed of rotor’s rotation 

around its own axis. We have
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Let’s calculate the flux linkage of the rotor coil 
winding, due to the field (24). The position of the coil 
is determined by the angle φ0 between its magnetic 
axis and the axis x

f
 (Pic. 4):
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where τ is pole pitch, l is an active length of the 
machine. We obtain
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Then the flux linkage Ψ(φ0) of the winding group 
is equal to

( ) ( )
0

0

/2Қ
0 0

0

/2

 .f fw d
α

α

φ φ φ φ
−

Ψ = Φ +∫
Here Ф(φ0+φ

f
) is given as an expression for Ф(φ0) 

by replacing φ0 in it to (φ0+φ
f
), where φ0 is now assumed 

as an angle, created by the axis x
f
 and the magnetic 
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 is an angle of phase zone 
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tion ( 0
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have:
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We write the equation of Kirchhoff for winding 
groups:
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Ψ
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Flux linkage of the winding group Ψ
j
 is represented 

as the sum of linkages Ψ
j 
(f) and Ψ

j 
(s), resulting respec­

tively from a field of the rotor and the stator field. Assign­
ing the number 1 to a randomly chosen winding group, 
we enumerate all the others in the order of their location 
on the rotor’s periphery. Let the coefficient of self­induc­
tion of the winding group be l  =  l(0∙α), then the coefficient 
of mutual induction between j­th and k­th winding groups 

with the same directions of the currents in them is:

( ) ( )( )ҚҚҚorҚҚҚ 2 ,jk jkl l j k l l n j kα α= − = − −

where α is an angle between axes of adjacent winding 

groups (
n

πα = ). At any phase currents in adjacent 

winding groups have opposite directions. Let in all odd 
winding groups currents are directed from the ear «n» 
to the ear «k», and in even windings from «k» to «n». 
Then for the flux linkage of the j­th coil group due to 
the rotor field, we get
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The flux linkage Ψ

j 
(s) is determined by the for­

mula (30) at a value φ0, corresponding to the j­th 
winding group. Let for the first group φ0 =0, then for 
the j­th winding group we have
φ0 =(j­1)×αρ (29)

EMF corresponding to the flux linkage, calculated 

by the formula (25) with 0φ  according to (29), are 

directed in all winding groups equally from «n» to «k». 
The currents in odd winding groups have the same 
directions, while currents in even groups, as men­
tioned previously, have opposite direction. To match 
the direction of EMF and currents in even winding 
groups, it is necessary to attribute an opposite sign 
to the flux linkages calculated by (25) at (29) for even 
winding groups. Thus, we obtain the following expres­
sion for the flux linkage Ψ

j 
(s), true for both even and 

odd winding groups:
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Let the winding group number 1 enters a phase 
of «a». Then belongings of other groups are found at 
once. In the phase «a» we have 1, 4, …, 2n­2 winding 
groups, in the phase «b» we have 3, 6, …, 2n groups 
and in the phase «c» we have 2, 5, …, 2n­1 groups.

Let’s sum equations (28) for the values of the 
index i, which it takes in individual phases (assuming 
that winding groups in the phases are connected in 
series), and take into account:
i
a
 = i

1
 = i

4
= ∙∙∙ = i

2n­2
, i

b
 = i

3
 = i

6
= ∙∙∙ = i

2n
, i

c
 = i

2
 = i

5
= ∙∙∙ = i

2n­1
.

Pic. 4. To the calculation of flux linkage of rotor 
winding coil.
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Then we get

( )( )Ri Li 0,Қ
d

s
dt

+ + Ψ =  (31)

where i, Ψ(s) are column matrices of currents and flux 
linkages of phases, justified by the stator magnetic 
field:

( )T
,a b ci i i i=  ( ) ( ) ( ) ( )( )T

,a b cs s s sΨ = Ψ Ψ Ψ

R is a matrix of phase resistance, L is a matrix of 
phase inductances:

0

0

0

0 0

R 0 0 ,ҚҚҚL  .

0 0

m m

m m

m m

r l l l

r l l l

r l l l

   
   = =   
   
   
Here r is an active resistance of the phase, l

0
 is 

self­inductance of the phase, l
m

 is mutual inductance 
between phases:

02 ,r pr=  ( ) ( )
2 1

0
0

2 1 3 ,
p

k

k

l p l kα
−

=

= −∑  

( ) ( )( )
2 1

0

2 1 2 3  .
p

k

m
k

l p l k α
−

=

= − +∑
Flux linkage of phases, justified by stator mag­

netic field, is calculated, referring to (30):
( ) ( )

1 12 cos ;a ms pj m tω γΨ = −

( ) ( )
1 12 cos 120 ;b ms pj m tω γΨ = − −

( ) ( )
1 12 cos 120  .c ms pj m tω γΨ = − +

Hence, perturbed magnetic field, inducted by the 
rotor eccentricity, which in (30) corresponds to a 
component of flux linkage of the winding group, con­
taining a comprising factor mε, does not contribute to 
the flux linkage of phases of the rotor winding. This is 
due to the fact that the period of the perturbed mag­
netic field distribution is by half less than the pole 
pitch. Therefore, in each phase at normal rotor win­
ding flux linkage of odd winding groups due to per­
turbed magnetic field is compensated by the flux 
linkage of even winding groups of the same mag­

netic field. Thus, equations for variables 
1mj , 

2mj  and 

Ψ
2
 (they can be called equations of the unperturbed 

state) should not differ from the known equations of 
an induction machine, corresponding to the case of 
coincidence of the axes of stator and rotor.

Let’s now define the values mj ε
 and Ψε, associ­

ated with the perturbed magnetic field. In induction 
machines, with a rotor winding of a squirrel cage 
(either single or double), and in machines with a 
throttling­type or massive rotor, perturbed magnetic 
field, the radial component of which (see (24)) is

( )
1

2

1 2
0 0 12 2

1 2

2 cos 2 2 ,r m fB j t
ε

ρ ρε µ ω γ φ
ρ ρ

 
= − − − 

 (32)

induces a current in the rotor. This current is as­
sociated with previously  introduced v alue 

( )1 2sin 2mj t
ε εω φ ψ− −  (see (21)). In asynchronous 

machines with the specified rotor design the period 
of distribution of the current, induced in the rotor, 
coincides with the period of the external magnetic 

field rB
ε

. Therefore, the flux linkage of the «coil», 

corresponding to (36) and calculated by the formula
0

0

45 /2

/245

,
l

r f

l

B d dz
ε

φ

ε
φ

τ φ
π

+

−−

Φ = ∫ ∫

will be equal to:

( )
1

2

01 2
0 0 12 2

1 2

2 cos 2 2  .m

l
j tε

ρ ρ τε µ ω γ φ
ρ ρ π

 
Φ = − − − 

If the rotor winding is made as a squirrel cage with 
the number of rods h, the flux linkage of the «phase» 
of the rotor can be determined by the formula

0

0

/2Қ
0

/2

,
hp

d
α

ε ε
α

φ
π −

Ψ = Φ∫
where p is a number of pole pairs, α

0
 is an angle of 

phase zone.
We get

( )
1

2

1 2
0 0 0 12 2 2

1 2

2 sin cos 2m

lph
j tε

ρ ρ τε µ α ω γ
ρ ρ π

 
Ψ = − − 

As well as a «phase» EMF of the rotor eε, corre­
sponding to Ψε, which at a constant speed of rotor’s 
rotation is equal to:

( )

( )

1

2

1 2
0 0 12 2 2

1 2

0 1

2 1 2

sin sin 1 2 ,

m

lph
e j s

s t

ε
ρ ρ τε µ ω

ρ ρ π

α ω

 
= − − 

−



where s is motor slip ( 1 2

1

s
ω ω

ω
−

= ). Hence we find the 

current

( )'
1sin 1 2 ,Қmi I s t

εε εω ψ = − −   (33)

( )

( )

1

2

1 2
0 0 1 02 2 2

' 1 2

22 2

2 1 2 sin

,Қ
1 2

m

m

lph
j s

I
R s X

ε

ε ε

ρ ρ τε µ ω α
ρ ρ π

 
− − =

+ −
 (34)

( )1 2
arctg ,

s X

R
ε

ε
ε

ψ
−

=  (35)

where Rε is an active resistance, Xε is an inductive 
resistance of leakage of rotor. By the way, for the 
experimental determination of those parameters it 
would have been necessary to perform a stator 
winding with a half less pole pitch with unchanged 
other conditions.

The current iε forms a symmetrical positive series 
system, where (33) can be regarded as an expression 
of one of the phase currents in the reference frame 
of the rotor. It is very important that the period of 
distribution of «winding» with the current iε is by half 
less than the pole pitch. Therefore, current sheet, 
equivalent to this «winding», in the reference frame 
of the stator is given by the formula

( )1 2sin 2 ,Қmj j t
εε εω φ ψ= − −  (36)

which was set a priori in (21). In the derivation of the 
expression (36) it was assumed that the phase 
«windings» are distributed harmonically and are 
symmetrical relativ e to each other. In (36) 

'3

2m mj I
ε ε

= .

Let’s find an expression for mj ε
. Let’s first note that 

in the case of squirrel­cage rotor (26) we should take 

0 2

h
w

π
= , 

0
ҚҚҚsin 1 .fφ =  If we further consider that 

2pm = L
12

 is a coefficient of mutual inductance be­
tween the stator and the rotor, then, bearing in mind 
(31) and (38), we obtain
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( ) ( )

( ) 1

2
02

0 12 2
1 2

1222 2

3
cos 1 2

24
 .Қ

1 2
m m

s

j L j
R s X

ε

ε ε

αρε ω
ρ ρ

−
−

=
+ −

 (37)

The equations (35) and (37) play a very important 

role. They define values  and Ψε, which are in­

cluded in the formula for the radial component of the 
ponderomotive force acting on the rotor (23). There­
by the equation of radial movement of the rotor is 
concretized, and takes the form

( )1

22
1

0 22 2 2
1 2

2 cos ,Қm m c

d
M j j l F

dt ε ε
ρε εµ π ψ

ρ ρ
= −

−
 (38)

where F
c
 is radial force of resistance, for example, of 

a magnetic bearing, М is a mass of the rotor.

To determine the values 
1mj , 

2mj  and Ψ
2
 it is ne­

cessary to solve equations of an induction machine, 
describing processes in the absence of the eccentri­
city of the rotor. Those equations in general form can 
be written as follows:

1 2
1 1 1 12 1

2 1
2 2 2 21 2 2 21 1

i i
i u ;

i i
i i i 0; Қ

 .c

d d
R L L

dt dt
d d

R L L j L j L
dt dt

d
J M M

dt φ

ω ω

ω

+ + = 

+ + − − = 



= − 


 (39)

Here u
1
, i

1
, i

2
 are mapping vectors of voltage and 

current; R
1
 and R

2
 are active resistances of stator and 

rotor; L
12 

= L
21 

is their mutual inductance, equal to the 

main inductance of stator winding; 
11 12L L Lσ= + , 

22 21L L Lσ= + , 
1

Lσ  and 
2

Lσ  are leakage inductances of 

stator and rotor, including slot, end­coil and differen­
tial leakages; Mφ 

is a moment, justified by tangential 
component of the ponderomotive force; M

c
 is a mo­

ment of resistance; J is a moment of inertia relative 
to the axis of rotation of the rotor.

In harmonic distribution of phase windings and 
their symmetrical arrangement relative to each other 

the values 
1mj  and 

2mj  are numerically equal to the 

amplitudes 
1mI  and 

2mI  of currents i
1
 and i

2
, multiplied 

by 
3

2
, and Ψ

2
 is an angle between vectors i

1
 and i

2
. In 

the sinusoidal mode, assuming that in (39) 1

11 e j t
mu U ω=  , 

1

11 e j t
mi I ω=   and 1

22 e j t
mi I ω=  , we can immediately calcu­

late 
1mI  and 

2mI  by the equations:

( )
( )

1 2 1

2 1

1 1 12

2 2 12

,Қ
0

m m m

m m

R jX I jX I U

R jX s I jX sI

+ + = 


+ + = 

  

 

 (40)

which result from (39) at ω = const, and then we could 

calculate, using them, the values 
1mj , 

2mj  and Ψ
2
.

In small asynchronous machines, electromag­
netic time constants are small, so if those machines 

are fed from the infinite buses (
1mU , ω

1
 = const) their 

dynamic properties do not differ from static features. 
In that case, the considered procedure to determine 

the values 
1mj , 

2mj , mj ε
, Ψ

2
 and Ψε,, based on the use 

of (37) and (40), is completely justified. In contrast, 
for large asynchronous machines with sound windings 
and circuits a possibility of significant transients 
should be borne in mind. This leads to the need in­
stead of expressions (40) to use the equations (39), 

in which 12

2

X
М jφ = × × 2 1 1 2( )

∗ ∗
× − ×i i i i , and instead of 

formulas (34) and (35) to use equations

( )
1

2

1 2
0 0 0 12 2 2

1 2

;

ҚҚҚ Қ

2 sin cos 2 ,m

di
L R i e

dt

lph d
e j t

dt

ε
ε ε ε ε

ε
ρ ρ τε µ α ω γ

ρ ρ π

+ =

 
 = − −   − 

 (41)

where 
1mj  is already a time function.

Conclusions. Thus, to solve the problem of in­
vestigating the induction machine with magnetic 
bearings, and in particular, to solve the problem of 
calculating its vibration characteristics, an asynchro­
nous machine can be simulated by the equations (38) 
and (39), (41); or equations (35), (37), (38) and (40).

Finally, let’s note that the parameters in the equa­
tion (39) and (40) can be easily calculated by known 
methods [3] or found experimentally [4]. With regard 
to the parameters Rε 

and Xε, they are new and, as al­
ready noted, represent active and inductive leakage 
of the rotor, provided that the number of poles of the 
machine doubled. The calculation of those parame­
ters according to methods used in the practice of the 
engineering and designing of electrical machines, 
apparently, is not difficult. However, the experimental 
determination of those parameters in the existing 
machines is unlikely to be feasible. 
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