

Моделирование и оптимизация бизнес-процесса документального сопровождения грузоперевозок для построения цифровой системы документооборота

Юрий СУРОДИН

Ольга Владимировна Ефимова¹, Юрий Николаевич Суродин²

- ¹ Российский университет транспорт, Москва, Россия.
- ² ОАО «РЖД», Москва, Россия.
- ⊠¹ovefimova@mail.ru.

RNJATOHHA

Опьга ЕФИМОВА

Целью работы является анализ примеров оптимизации системы документального сопровождения грузовых железнодорожных перевозок на основе перехода к электронной форме документов.

Рассматривается теоретическая концепция моделирования бизнес-процесса документального сопровождения грузоперевозок с применением программного продукта ARIS, который используется в разработке комплексной процессной модели деятельности многих производственных и транспортных компаний в России и в мире [1].

Предметом исследования является моделирование системы документооборота сопровождения грузовых перевозок для устранения потерь в существенной части процессов взаимодействия с клиентами. Целью моделирования бизнес-

процессов является использование всех преимуществ и функциональных возможностей CASE-средств для устранения дублирования действий и операций, не добавляющих ценности клиентам транспортной компании и снижающих их пояльность продуктам и услугам железнодорожной перевозки. Исследуются бизнес-процессы, обеспечивающие формирование заявки на перевозки и её трансформацию в ходе перевозочного процесса

В исследовании, отражающем результаты моделирования бизнес-процессов документального сопровождения перевозок в цифровой форме, даётся сравнительный анализ этих моделей, описываются преимущества электронной формы документов по сравнению с бумажной с учётом возможности использования цифровой подписи.

<u>Ключевые слова:</u> электронный документооборот, цифровая технология, моделирование, бизнес-процесс, железнодорожные перевозки, сопровождение грузоперевозок.

<u>Для цитирования:</u> Ефимова О. В., Суродин Ю. Н. Моделирование и оптимизация бизнес-процесса документального сопровождения грузоперевозок для построения цифровой системы документооборота // Мир транспорта. 2021. Т. 19. № 2 (93). С. 57–63. DOI: https://doi.org/10.30932/1992-3252-2021-19-2-8.

Полный текст статьи на английском языке публикуется во второй части данного выпуска. The full text of the article in English is published in the second part of the issue.

ВВЕДЕНИЕ

Моделирование процессов в любом виде бизнеса, а в особенности в транспортном секторе экономики с преобладающим характером сквозных технологий направлено на совершенствование бизнес-процессов и показателей, которые служат индикаторами и драйверами улучшения деятельности организации. Моделирование является одним из методов анализа и совершенствования движения документов на предприятии. Моделирование — описание, выявление, имитация и анализ бизнес-процессов, конструирование новых процессов с целью их последующей оптимизации.

Одним из основных бизнес-процессов на железнодорожном транспорте являются грузовые перевозки, во многом определяющие экономические показатели деятельности работающих в этой отрасли компаний. Вполне естественно, что грузовые перевозки стали одной из первых площадок для апробации и применения цифровых технологий, в том числе моделирования многих процессов, включая связанные с документооборотом, играющим важную роль в оформлении взаимоотношений с грузоотправителями, регулирующими органами, непосредственно в процессе перевозки.

Исследование и проектирование процессов информационного сопровождения грузовых перевозок с использованием инструментария моделирования позволяет:

- наглядно, графически представить структуру системы информационного сопровождения взаимодействия с грузоотправителями;
- подробно описать функции системы документооборота;
- выявить потенциальные возможности развития технологий документооборота с клиентами железнодорожного транспорта;
- выявить и проанализировать информационные связи с внутренними и внешними участниками документарного сопровождения перевозочного процесса;
- оптимизировать технологические операции работы с документами, их последовательность, применяя технологию описания потоков работ (workflow).

Моделирование позволяет максимально упростить систему электронного документооборота, отражая её самые важные свойства и ресурсы, что способствует исключению потерь в бизнес-процессе документооборота при использовании инструментальной среды как средства оптимизации и прогнозирования. Оформленная в стандартном виде модель позволяет спроектировать будущий процесс до того, как он будет воспроизведён в виде программно-аппаратных комплексов, что способно уменьшить затраты на его создание [2]. Визуальное представление процессов получения и обработки информации о формировании заявки на перевозку и её согласование даёт возможность устранить потери в эффективности и времени на оформление перевозочных документов [3].

В моделировании бизнеса используются математические методы, которые базируются на исследовании операций (ИСО), целью которого является поиск рационального способа действия при решении организационноуправленческих задач в условиях присутствия различных ограничений. К таким задачам относится множество задач линейного и динамического программирования, управление запасами, теория массового обслуживания и т. д. Современные представления о бизнесмоделировании основываются на процессном подходе к управлению. Огромное количество публикаций теоретического направления посвящено процессному подходу и опыту практического применения [4; 5]. Публикации содержат образцы бизнес-моделирования, в которых используются инструментальные средства для различных видов производственных систем и технологий [6; 7]. Благодаря процессному подходу и методологии бизнесмоделирования бизнес может быть описан как совокупность процессов, каждый из которых может быть оптимизирован на основе стандартов менеджмента качества, а также подходов, позволяющих устранить потери и операции, которые не добавляют ценности потребителю.

Инструментальные средства моделирования осуществляются многочисленными пакетами прикладных программ, которые предназначены для различных сфер деятельности. В области «разработки программных продуктов и программной инженерии одним из способов представления процессов является CASE-метод (англ. computer-aided software engineering)» [8], который включает набор методов, инструментов программной инженерии для проектирования программного обеспечения, помогая гарантировать высокое качество сопровождения программного

ных информационных систем и продуктов [9; 10].

CASE-средства – это инструменты, предназначенные для оптимальной автоматизации процессов проектирования и разработки не только программного обеспечения с позиций трудозатрат разработчика, но и для процессов в других областях деятельности, в частности для описания технологий транспортных процессов. Вначале CASE-средствами считались лишь инструменты, которые предназначены для упрощения самых сложных и трудоёмких процессов анализа и конструирования информационных систем. Однако после введения стандарта ISO/IEC 14102 CASE-средства стали определять как программные средства для поддержки процессов жизненного цикла цифровых сервисов и программных продуктов [11].

Содержание этого понятия, «как правило, определяется перечнем решаемых задач, а также совокупностью применяемых методов и средств» [12, с. 44], то есть, иными словами, алгоритмами и форматами описания процессов для автоматизации. САSE-технологии — «совокупность методологий анализа, разработки и сопровождения сложных систем, поддержанную совокупностью взаимоувязанных средств автоматизации» [12, с. 44].

Функциональное назначение программных продуктов, которые используются для автоматизации бизнес-процессов предприятий, можно представить, разделив на три вида: интегрированные корпоративные системы, системы электронного документооборота и программные продукты для формализованного представления бизнес-процессов.

Системы электронного документооборота выполняют функции учёта, передачи и хранения документов, что имеет особенное значение в транспортной сфере, где перевозочные документы являются основанием для оплаты особого вида продукции – перевозки, которая не может быть сохранена или возвращена исполнителю.

Программные продукты моделирования бизнес-процессов обычно используются в деятельности организации в реинжиниринговых проектах. Эти же продукты могут быть использованы для реинжиниринга системы электронного документооборота.

Моделирование процесса начинается «со стадии анализа требований и конструирования взаимосвязей и структуры операций, которые составляют в процессе поток создания ценности. Это максимально плохо формализуемые и трудоёмкие этапы разработки систем управления. Когда разрабатывают любую систему управления, появляется задача выбора инструмента проектирования, который должен позволять эффективно и грамотно решать поставленные задачи и отвечать всем требованиям проектировщиков» [13]. Выбор CASE-средства во многом зависит от методов анализа и проектирования ИС.

На этот счёт можно привести развёрнутую цитату из упомянутой работы К. С. Мышенкова [13]: «Функциональные модели выполняют функции структурированного изображения среды или системы, информации и объектов, которые связывают эти функции. Эти модели применяют при проектировании новой системы, при анализе требований к системе, при принятии решений о реинжиниринге системы управления для анализа бизнес-процессов.

Модели потоков данных необходимы для графического структурного анализа, которые описывают внешние по отношению к системе процессы, приёмники и источники данных, потоки данных и хранилища данных, к которым выполняется доступ.

Модели бизнес-процессов содержат описание потоков работ, бизнес-функций, подразделений, ресурсов, процессов, ролей, носителей информации, информационных систем, должностей. При этом модели могут быть как статическими, так и динамическими, поскольку описывают последовательность и условия реализации бизнес-процессов. Модели бизнес-процессов применяются при внедрении систем управления на предприятиях, при описании и реинжиниринге видов деятельности компании, во время анализа и определения требований к системе.

Событийные модели данных отображают функционирование системы в качестве набора состояний бизнес-единиц или предметов труда, в том числе существенные события системы по их трансформации. Информационные модели конкретной предметной области или её объектов отражают структуру данных проектируемых систем» [13].

Статические модели бизнес-систем с течением времени не отображают динамику. У таких моделей формы представления на всех ступенях реинжиниринга относятся к классам, диаграммам, компонентам или

объектам системы и их отношениям между собой. Динамические модели используются для анализа, отражают последовательность выполнения функций системы в течение времени, а также процесс изменения состояний реальной или проектируемой системы [13].

Если рассматривать пример России, то наиболее распространёнными программными продуктами для «моделирования бизнеспроцессов по данным исследовательской компании Gartner, которая специализируется на аналитике рынка информационных технологий, являются системы Corporate Modeler Suite и ARIS¹, представляемые компаниями Casewise и IDS Scheer AG на мировом рынке, соответственно. Corporate Modeler Suite занимает лидирующее положение в ряде стран, однако этот инструмент, в отличие от ARIS, пока ещё на российском рынке не популярен» [14].

Целью исследования, результаты которого изложены в данной статье, являлось рассмотрение примера оптимизации процесса документального оформления грузоперевозки.

Методом исследования является инструментарий ARIS (Architecture of Integrated information Systems). ARIS имеет набор программных сервисов для построения карты процессов; нескольких нотаций описания моделей, а именно: eEPC (extended event driven process chain) и «модели бизнеспроцессов в нотации BPMN (Business process model and notation). В составе бизнесвозможностей продукта ARIS включена также функция Smart Design, которая позволяет быстро вносить необходимые данные для автоматизированного создания» моделей [5].

РЕЗУЛЬТАТЫ

Основной целью применения методов моделирования бизнес-процесса документооборота является повышение его операционной эффективности, а также организация передачи данных наиболее оптимальным способом, ведущей к снижению затрат времени, трудовых и материальных ресурсов, повышению уровня транспортно-логистических услуг и конкурентоспособности.

Инструментарий моделирования бизнеспроцесса документооборота ARIS рассматривает организацию в следующих пяти аспектах: «продуктов и услуг, обрабатываемых данных, функциональном, организационном, структуры бизнес-процессов. Эти аспекты подразделяются ещё на три подуровня: описание спецификации, описание требований, описание внедрения. При описании бизнес-процессов используют примерно 80 типов моделей, каждая из которых относится к одному из аспектов. Главным принципом в ARIS является возможность интеграции моделей разных типов в рамках одного репозитория путём детализации объектов. В результате любая организация может быть описана с помощью иерархии моделей» - от, к примеру, процессов верхнего уровня «до уровня процедур и ресурсного окружения функций» [15].

Модели процессов подачи заявки на перевозку груза, разработанные при помощи инструментария ARIS, представлены ниже (рис. 1 и 2). Сопоставление моделей бизнеспроцесса документооборота наглядно показывает эффективность электронной формы грузосопроводительных документов по сравнению с бумажной.

Для конкретизации примеров использованы некоторые процедуры и формы документов, применяемые на сети ОАО «РЖД».

Электронная форма документов нивелирует ряд повторяющихся итераций в ходе согласования и корректировки документов, существенно сокращая при этом время оформления документов и упрощая процедуру согласования. В частности, оформление заявки на перевозку грузов при оформлении заявки в электронном виде по сравнению с бумажным документооборотом сокращается на восемь операций, выполняемых агентом транспортной компании. Весь процесс согласования, включающий пять вариантов результата (передача заявки с результатом согласования, отказ от частично согласованной заявки, отзыв заявки на перевозку грузов, отказ от выполнения согласованной заявки, отказ от выполнения части согласованной заявки), сокращается до одного действия клиента внесения информации в АРМ (автоматизированное рабочее место).

Очевидным преимуществом электронного документооборота является отсутствие необходимости выездов клиента для подтверждения каждой операции по оформлению и корректировке документа. Современный уровень развития технологий не позво-

¹ Официальный сайт ARIS Community. [Электронный ресурс]: https://www.ariscommunity.com/. Доступ 12.03.2021.

Рис. 1. Процесс подачи заявки на перевозку груза при бумажном документообороте (составлено авторами).

ляет взаимодействовать с грузоотправителями иным способом с точки зрения стратегии клиентоориентированности железнодорожного транспорта.

АС «ЭТРАН» (Автоматизированная система «Электронная транспортная накладная») предназначена для электронного документооборота в организации, в которой документы содержат электронную подпись. Форма ГУ-12, указанная на рис. 1, это заявка на перевозку грузов железнодорожным транспортом, которую представляет грузоотправитель для осуществления перевозки грузов, а форма ДУ-18 — заявка на перевозку грузов на транспорте.

Электронная система документооборота позволяет полностью отказаться от таких операций, как:

- формирование и заполнение бумажных экземпляров документа;
- лишние перемещения представителей клиента, связанные с необходимостью доставки бумажных форм;
- исправление ошибок, возникающих при заполнении форм;
- обработка, связанная с проставлением штампов и письменным заполнением бумажной формы документов;
- автоматическое занесение данных и печать документов с применением системы

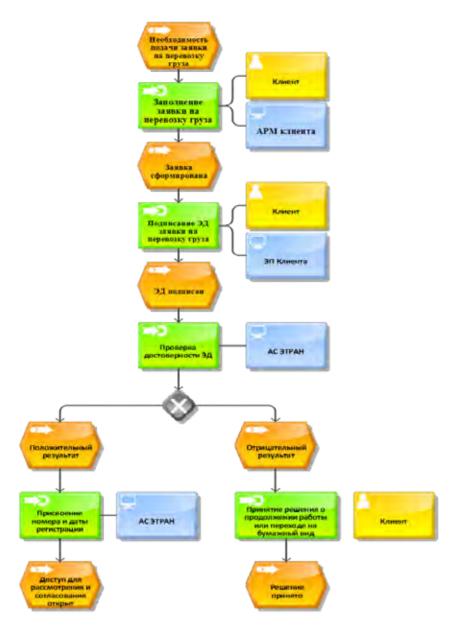


Рис. 2. Процесс подачи заявки на перевозку груза с использованием ЭП (составлено авторами).

централизованной подготовки и оформления документов для перевозки;

- проверка правильности заполнения и наличия необходимых документов;
- проставление штампов и письменное заполнение бумажной формы;
 - хранение экземпляров документов;
- лишние перемещения сотрудников транспортной компании, связанные с передачей документа ответственному агенту;
- проверка агентом транспортной компании полномочий представителя грузополучателя.

выводы

В результате отмены бумажной формы грузосопроводительных документов экономятся время всех участников перевозочного процесса, трудовые и материальные ресурсы компаний.

Графическое отражение и сопоставление существующих моделей системы в работе не является самоцелью. Анализ представленных моделей позволяет планировать дальнейшую адаптивную трансформацию и формировать архитектуру цифровой системы документооборота, которая должна обеспечивать эффек-

• МИР ТРАНСПОРТА. 2021. Т. 19. № 2 (93). С. 57–63

тивность ресурсов, процессов и рыночную эффективность компании.

Выбор инструментария ARIS при построении данных моделей обусловлен не только его способностью создать модель организации, но и возможностью провести достаточно глубокий анализ бизнес-процессов. ARIS позволяет взглянуть на организацию и понять, где возникли «узкие» места процессов, какие ресурсы неэффективно используются и какие цепочки бизнес-процессов надо поменять. Различные модули ARIS позволяют в динамике рассматривать всевозможные сценарии выполнения бизнес-процессов, не меняя реальной структуры организации.

Благодаря анализу бизнес-процессов и определению концептуальной схемы можно определить главные цели бизнеса и этим обозначить новые бизнес-процессы, которые необходимо будет спроектировать, параллельно идентифицируя слабые места. К тому же стратегический анализ бизнес-процессов помогает вычислить, какие новые информационные технологии возможны и целесообразны для внедрения в деятельность компании [16].

СПИСОК ИСТОЧНИКОВ

- 1. Информационные технологии в менеджменте. Санкт-Петербургский государственный университет, 2010. 150 с. [Электронный ресурс]: https://e.lanbook.com/book/47525. Доступ 12.03.2021.
- 2. Калашян А. Н., Калинов Г. Н. Структурные модели бизнеса: DFD-технологии / Под ред. Г. Н. Калянова. М.: Финансы и статистика, 2009. 256 с. ISBN 5-279-02562-3.
- 3. Ильин В. В. Моделирование бизнес-процессов. Практический опыт разработчика. М.: Агентство электронных изданий «Интермедиатор», 2015. 252 с. ISBN 978-5-8459-1338-8.
- 4. Таха Х. А. Введение в исследование операций. М.: Вильямс, 2005. 912 с. ISBN: 978-5-8459-0740-0.
- 5. Ковылкин Д. Ю., Новикова В. Н., Ратафьев С. В. Возможности современных инструментальных средств моделирования бизнес-процессов // Креативная экономика. 2019. № 7. Т. 13. С. 1457–1474. [Электронный ресурс]: http://elibrary.ru/item.asp?id=39215614. Доступ 12.03.2021.
- 6. Репин В. В. Бизнес-процессы. Моделирование, внедрение, управление. М.: Манн, Иванов и Фербер, 2014. 512 с. ISBN 978-5-91657-907-9.

- 7. Репин В. В., Елиферов В. Г. Процессный подход к управлению. Моделирование бизнес-процессов. М.: Манн, Иванов и Фербер, 2013. 544 с. ISBN 978-5-91657-554-5.
- 8. Менькова С. Е., Крамаренко Т. А. Проектирование структуры базы данных бизнес-приложения с помощью САЅЕ-средств // Сб. трудов П всероссийской научнопракт. конференции «Цифровизация экономики: направления, методы, инструменты». Краснодар, январь 2020. С. 407—409. [Электронный ресурс]: http://elibrary.ru/item.asp?id=42536841. Доступ 12.03.2021.
- 9. Kuhn, D. L. Selecting and effectively using a computer aided software engineering tool. Annual Westinghouse computer symposium; 6–7 Nov 1989; Pittsburgh, PA (USA); DOE Project.
- 10. Loucopoulus, P., Karakostas, V. System Requirement Engineering. London: McGraw-Hill, 1995, 160 p. ISBN 0-07-707843-8.
- 11. Одинцов И. О. Профессиональное программирование. Системный подход. 2-е изд. СПб.: БХВ-Петербург, 2004. 624 с. ISBN 5-94157-457-6.
- 12. Масленникова О. Е. Автоматизированные технологии создания информационных систем: современность, проблемы, перспективы // Проблемы разработки и адаптации информационных систем и технологий // Межвуз. сб. науч. статей / Под общей редакцией О. Б. Назаровой. Магнитогорск, МаГУ, 2008. 186 с. [Электронный ресурс]: https://booksee.org/book/805015. Доступ 12.03.2021.
- 13. Мышенков К. С. Методика обоснования выбора CASE-средств для анализа и проектирования систем управления предприятиями // Инновации. 2013. № 10 (180). С. 112—122. [Электронный ресурс]: http://elibrary.ru/item.asp?id=22259188. Доступ 12.03.2021.
- 14. Аналитика систем электронного документооборота (СЭД) и ЕСМ. Анализ систем документооборота. [Электронный ресурс]: http://www.docflow.ru/news/analytics/?SHOWALL 1=1/#4. Доступ 12.03.2021.
- 15. Методология ARIS. [Электронный ресурс]: http://reftrend.ru/826069.html. Доступ 12.03.2021.
- 16. Шеер А. В. ARIS моделирование бизнес-процессов. – М.: Весть-МетаТехнология, 2009. – 224 с. ISBN 978-5-8459-1449.
- 17. Елиферов В. Г., Репин В. В. Бизнес-процессы: регламентация и управление: Учебник. М.: Инфра-М, 2021. 319 с. ISBN 978-5-16-001825-6.
- 18. Кондратьев В. В. Даёшь инжиниринг. Навигатор для профессионала / Под ред. В. В. Кондратьева и В. Я. Лоренца. М.: Изд-во Эксмо, 2005. 174 с. ISBN 5-699-13360-7.
- 19. Хаммер М., Чампи Д. Реинжиниринг корпорации: Манифест революции в бизнесе. М.: Манн, Иванов и Фербер, 2006. 321 с. ISBN 978-5-902862-54-3.
- 20. Вендров А. М. Проектирование программного обеспечения экономических информационных систем: Учебник. М.: Финансы и статистика, 2006. 544 с. ISBN 5-279-02937-8.
- 21. Беляшов А. Н., Мышенков К. С. Анализ методов проектирования систем управления // Системный анализ в проектировании и управлении: Сб. науч. тр. XVII Междунар. науч.-практ. конф. Ч. 2. СПб.: Изд-во Политехн. ун-та, 2013. С. 3–6.

Информация об авторах:

Ефимова Ольга Владимировна – доктор экономических наук, профессор Российского университета транспорта, Москва, Россия, ovefimova@mail.ru.

Суродин Юрий Николаевич – исполняющий обязанности главного инженера Центра фирменного транспортного обслуживания (ЦФТО) – филиала ОАО «РЖД», Москва, Россия, shalaknom3@yandex.ru.

Статья поступила в редакцию 08.02.2021, одобрена после рецензирования 21.04.2021, принята к публикации 23.04.2021.

