

УДК 624.21:69.059 DOI: https://doi.org/10.30932/1992-3252-2020-18-6-64-73

НАУКА И ТЕХНИКА

Риск-ориентированный подход при оценке технического состояния фундаментов мостовых сооружений

Каимов Евгений Витальевич — Иркутский государственный университет путей сообщения (ИрГУПС), Иркутск, Россия*.

Евгений КАИМОВ

Целью данной статьи является рассмотрение применения прогнозных математических моделей для оценки рисков, связанных с критической потерей показателей функционального качества несущих конструктивных элементов (фундаментов) мостовых сооружений с применением методов вероятностного анализа и прогноза рисков снижения показателей технического состояния конструктивных элементов.

Результатом исследований является разработка алгоритма и математической модели, характеризующих особенности снижения показателей технического состояния несущих конструкций в течение проектного срока службы. Приведены результаты оценки потери функционального качества фундаментов, полученные при помощи данной модели.

Практической значимостью исследования является возможность и целесообразность применения вероятностных методов для прогнозной оценки технического состояния несущих конструкций. С помощью соответствующей математической модели становится возможным проектное обоснование показателей функционального качества фундаментов мостовых сооружений.

Показана необходимость совершенствования нормативных положений по проектированию и прогнозу показателей технического состояния объектов транспортной инфраструктуры.

Ключевые слова: транспортное строительство, мостовые сооружения, характеристика технического состояния, анализ рисков, математическая модель фундаментов, физический износ, срок службы.

Каимов Евгений Витальевич – доцент кафедры строительства железных дорог, мостов и тоннелей Иркутского государственного университета путей сообщения (ИрГУПС), Иркутск, Россия, eugen-kaimov@yandex.ru.

Статья поступила в редакцию 03.11.2020, принята к публикации 15.01.2021.

For the English text of the article please see p. 69.

^{*}Информация об авторе:

ходе рассмотрения вопроса оценки технического состояния транспортных сооружений отечественными и зарубежными учёными был проделан значительный объём исследований. Так, предложена методика прогнозирования состояния эксплуатируемых мостов с учётом сложности и специфики содержания в городских условиях с использованием аппарата теории надёжности, а также введены и обоснованы параметрические значения функции зависимости состояния сооружения от времени эксплуатации [1], выполнено построение линейной динамической дискретной окрестностной модели процесса износа элементов мостового сооружения [2], проведён анализ опыта ряда стран по внедрению экспертных систем управления состоянием мостовых сооружений на автомобильных дорогах, основанных на базе знаний, закладываемой в процессе разработки и редактируемой при использовании [3].

На железных дорогах предлагается создание региональных центров мониторинга, прогнозирования и обеспечения безопасности сложных технических систем для контроля над их состоянием, накопления статистической информации и формирования баз данных об объектах инфраструктуры, критериях рисков и размерах запаса остаточного ресурса [4].

В работах иностранных исследователей проводится оценка риска прерывания строительной деятельности мостовых объектов с целью выявления основных причин его возникновения, а также определения потенциальных результатов, вытекающих из возникновения риска. Для этого применяются методы анализа дерева неисправностей и дерева событий (ЕТА). Поскольку применение традиционного подхода в рамках этих двух методов во многих случаях затруднено из-за ограниченного доступа к информации, нечёткую арифметику можно рассматривать как полезный инструмент. В одном из исследований структура дерева неисправностей вначале создаётся в соответствии с последствиями, полученными в результате применения метода Delphi. Затем вероятность возникновения риска вычисляется с помощью анализа дерева неисправностей (FTA) на основе нечёткой логики. Устанавливая структуру дерева отказов, связанную с риском отказа стратегий смягчения последствий, выявляются основные причины, связанные с отказом стратегий. Структура дерева событий создаётся с использованием полученных результатов; кроме того, показывается ожидаемая денежная стоимость (EMV) [5].

Строительство мостовых проектов зачастую начинается в сложных и динамичных условиях, приводящих к высокой неопределённости и риску, которые усугубляются многочисленными ограничениями. Общая методология исследования в значительной степени опирается на опросный лист, заполнение которого различными подрядчиками по строительству мостов и руководителями проектов различных размеров осуществляется по почте или на совещании персонала. Анкета, подготовленная для опроса, составляется путём ознакомления с соответствующей литературой в области управления строительством. Этот подход направлен на выявление факторов риска, влияющих на эффективность мостовых проектов в целом, и их анализ с использованием соответствующих инструментов и методов, а также на разработку системы управления рисками. Анкета в описываемом случае была разделена на семь категорий, по которым всего респондентам было задано 50 вопросов. Ответы были проанализированы с помощью программного обеспечения SPSS. Статистический анализ ответов касательно факторов был разделён на отдельные наборы критических факторов. Это исследование направлено на выявление факторов, повлиявших на проект строительства моста, и учёт тех из них, которые являются критическими, для улучшения анализа рисков. Однако было замечено, что степень их вклада варьируется в зависимости от конкретного уровня эффективности проекта. Предполагалось, что результаты анализа помогут специалистам проекта сосредоточиться на нескольких факторах и получить оптимальные результаты, а не уделять внимание всем факторам и не получать пропорциональные им результаты [6].

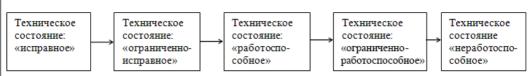


Рис. 1. Модель ухудшения показателей технического состояния (физического износа) фундаментов мостовых сооружений [11; 12].

Риски ухудшения основных функциональных свойств фундаментов мостовых сооружений (формирование и накопление физического износа) отображаются снижением первоначальных (проектных) показателей несущей способности по принятым группам предельных состояний [7; 8].

Для корректного учёта и отображения технического состояния фундаментов предлагается вероятностная модель, которая позволяет на этапе проектирования осуществить прогноз изменения функционального качества рассматриваемых несущих конструкций [9; 10].

Целью настоящей статьи является демонстрация возможности применения математической модели для оценки технического состояния несущих конструкций в течение проектного срока службы посредством использования методов статистической обработки ретроспективных информационных данных о послед-

ствиях проявлений эксплуатационных факторов различной физической природы, математического моделирования процессов и явлений, а также аналитического обзора инженерных решений случайных (вероятностных) задач при неполных исходных данных. За исследуемый критерий принимается показатель физического износа фундамента с точки зрения количественного значения функции последствий проявлений негативных эксплуатационных факторов. Обосновывается применение показателя вероятности наступления неработоспособного технического состояния фундаментов при оценке рисков снижения функционального качества транспортных сооружений.

ВЕРОЯТНОСТНАЯ МОДЕЛЬ ТЕХНИЧЕСКОГО СОСТОЯНИЯ ФУНДАМЕНТОВ

Техническое состояние фундаментов мостовых сооружений может быть отображено посредством математической

Таблица 1 Характеристика принятых технических состояний фундаментов [13; 14]

1										
№ п/п	Название состояния	Обобщённая характеристика технического состояния	Показатель физического износа, (ориентировочно), %							
1	Исправное	Объекты исследований (фундаменты) полностью соответствуют проектным параметрам и условиям эксплуатации	0÷3							
2	Ограниченно- исправное	Объекты исследований (фундаменты) частично не соответствуют проектным параметрам, но соответствуют условиям эксплуатации	4÷12							
3	Работоспособное	Объекты исследований (фундаменты) практически полностью не соответствуют проектным параметрам, но соответствуют хотя бы одному варианту условий эксплуатации	13÷38							
4	Ограниченно- работоспособное	Объекты исследований (фундаменты) практически полностью не соответствуют проектным параметрам, а единственный вариант эксплуатации допускается с ограничениями	39÷60							
5	Неработоспособное	Объекты исследований (фундаменты) полностью не соответствуют проектным параметрам, требуется немедленная остановка эксплуатации	61÷100							

Вероятность наступления неработоспособного технического состояния фундаментов (физического износа более чем 60 %) [15; 16]

Наименование	Значения функции (интенсивности накопления) физического износа									
показателя	0,1	0,08	0,05	0,03	0,01	0,008	0,004	0,001		
Срок службы, t лет	50									
Вероятность отказа, P_t	0,17547	0,15629	6,6801 • 10-2	1,4120 • 10-2	1,5795 • 10-4	5,7201 • 10-5	2,1833 • 10-6	2,4772 • 10-9		
Срок службы, t лет	100									
Вероятность отказа, Р	3,7834 • 10-2	9,1604 • 10-2	0,17547	0,10082	3,06571 • 10 ⁻	1,2270 • 10-3	5,7201 • 10-5	7,5403 • 10-8		
Срок службы, t лет	150									
Вероятность отказа, P_t	1,9358 • 10-3	1,2741 • 10-2	0,10938	0,17083	1,4120 • 10-2	6,2456 • 10-3	3,5563 • 10-4	5,4467 • 10 ⁻⁷		

модели непрерывного однородного процесса Марковского типа (рис. 1).

В табл. 1 приведён качественный и количественный состав показателей, характеризующих каждое из принятых к рассмотрению возможных технических состояний.

Например, значение физического износа, соответствующее неработоспособному техническому состоянию («Состояние 5», табл. 1) конструктивных элементов фундаментов, определяет высокий уровень рисков снижения эффективности и безопасности эксплуатации объектов транспортной инфраструктуры.

Вероятность проявления последствий снижения технического состояния (накопления физического износа) фундаментов в течение установленного (проектного) срока службы *t* характеризуется аналитической зависимостью вида:

$$P_{t} = \frac{1}{n!} \cdot (\lambda \cdot t_{i})^{n} \cdot e^{-\lambda \cdot (t_{i} - t_{0})}, \tag{1}$$

где P_t — вероятность наступления неработоспособного технического состояния (отказа) фундаментов;

 λ — интенсивность снижения уровня технического состояния (накопления физического износа);

 t_0 — количество времени, отводимого на приработку фундаментов (лет);

n — количество видов технических состояний;

 t_i — расчётный срок службы (лет).

В табл. 2 представлены расчётные значения вероятности наступления неработоспособного технического состояния (отказа) для некоторых значений интенсивности снижения уровня технического

состояния (накопления физического износа) и проектного срока службы фундаментов мостовых сооружений.

Определение значений параметра λ для конкретных видов фундаментов и условий эксплуатации мостовых сооружений производится с использованием следующих методов:

- аналитического, численного или численно-аналитического моделирования процессов и воздействий;
- корреляционного анализа или экспертных оценок;
- ретроспективного анализа с применением статистических данных о выявленных особенностях эксплуатации, динамике изменения технического состояния (физического износа) фундаментов за некоторый фиксированный период времени;
- перспективного анализа с применением других видов математических (прогнозных) моделей;
- принятия определённого директивного значения показателя, обоснованного техническими, экономическими или иными факторами.

Рациональная область применения каждого из рассмотренных методов зависит от типа решаемой задачи и наличия необходимой для получения результата информационной базы.

Широкий выбор методов определения значений параметра λ , с одной стороны, позволяет оптимизировать процесс выбора наиболее конкретных видов фундаментов и условий эксплуатации фундаментов, но, с другой стороны, нуждается в определённом нормативном регулиро-

вании количественных значений допустимых рисков, связанных с предполагаемым снижением функционального качества несущих конструкций.

ЗАКЛЮЧЕНИЕ

Показатели технического состояния фундаментов мостовых сооружений являются ключевым фактором при оценке рисков снижения эффективности эксплуатации транспортной системы.

Математическая (прогнозная) модель учёта и прогноза снижения показателей функционального качества несущих конструкций может быть использована в качестве обоснования проектных решений по выбору конструктивного решения и срока службы фундаментов мостовых сооружений.

Количественные и качественные значения параметров рисков, полученные в результате проведения анализа, определяют уровень технического состояния фундаментов и возможность обеспечения выполнения функционально-технологических (транспортных) процессов.

ЛИТЕРАТУРА

- 1. Белый А. А. Вероятностное прогнозирование технического состояния эксплуатируемых железобетонных мостовых сооружений мегаполиса // Вестник гражданских инженеров. -2017 № 2 (61). -C. 64—74. [Электронный ресурс]: https://www.elibrary.ru/item.asp?id=29434851. Доступ 03.11.2020. DOI: 10.23968/1999-5571-2017-14-2-64-74.
- 2. Бондарев Б. А., Седых И. А., Сметанников А. М. Оценка транспортно-эксплуатационного состояния элементов конструкций проезжей части мостовых сооружений с помощью окрестностных моделей // Вестник Пермского национального исследовательского политехнического университета. Строительство и архитектура. 2018. Т. 9. № 4. С. 47—57. [Электронный ресурс]: https://cyberleninka.ru/article/n/otsenka-transportno-ekspluatatsionnogo-sostoyaniya-elementov-konstruktsiy-proezzhey-chasti-mostovyh-sooruzheniy-s-pomoschyu/pdf. Доступ 03.11.2020.
- 3. Нигаматова О. И., Овчинников И. Г. Международный опыт применения экспертных систем для оценки состояния мостовых сооружений // Науковедение. 2016. Т. 8. № 1 (32). [Электронный ресурс]: http://naukovedenie.ru/PDF/66TVN116.pdf. Доступ 03.11.2020.
- 4. Быкова Н. М., Белялов Т. Ш. Подходы к оценке и способам прогнозирования безопасности состояния сложных технических объектов // Современные технологии. Системный анализ. Моделирование. − 2015. − № 4 (48). − С. 113−118. [Электронный ресурс]: https://cyberleninka.ru/article/n/podhody-k-otsenke-i-sposobam-prognozirovaniya-bezopasnosti-sostoyaniya-slozhnyh-tehnicheskih-obektov/pdf. Доступ 03.11.2020.

- 5. Abdollahzadeh, G., Rastgoo, Sima. Risk Assessment in Bridge Construction Projects Using Fault Tree and Event Tree Analysis Methods Based on Fuzzy Logic. ASCE-ASME J. Risk and Uncertainty in Engineering systems, Part B: Mechanical Engineering, 2015, Vol. 1, Iss. 3. [Электронный ресурс]: https://doi.org/10.1115/1.4030779. Доступ 03.11.2020.
- 6. Vidivelli, B., Vidhyasagar, E., Jayasudha, K. Risk Analysis in Bridge Construction Projects. International Journal of Innovative Research in Science, Engineering and Technology, 2017, Vol. 6, Iss. 5. DOI: 10.15680/IJIRSET.2017.0605168.
- 7. СП 35.13330.2011. Мосты и трубы. Актуализированная редакция СНиП 2.05.03-84*: утв. Министерством регионального развития РФ № 822 от 28 декабря 2010 г. М.: ФАУ «ФЦС», 2010. 346 с. [Электронный ресурс]: https://nostroy.ru/nostroy_archive/nostroy/443423296-SP%2035.13330.pdf. Доступ 03.11.2020.
- 8. EN 1992-2. Eurocode 2: Design of concrete structures Part 2: Concrete bridges. Design and detailing. Brussel, European Committee for Standardization, 2009, 98 р. [Электронный ресурс]: https://www.phd.eng.br/wp-content/uploads/2015/12/en.1992.2.2005.pdf. Доступ 03.11.2020.
- 9. Melsa, J. L., Sage, A. P. An Introduction to Probability and Stochastic Processes. Courier Corporation, 2013, 416 p. ISBN 0486315959, 9780486315959.
- 10. Гинис Л. А. Обзор методов научного прогнозирования // Известия Южного федерального университета. Технические науки. 2009. Тематический выпуск. С. 231—236. [Электронный ресурс]: https://cyberleninka.ru/article/n/obzormetodov-nauchnogo-prognozirovaniya. Доступ 03.11.2020.
- 11. Кельберт М. Я., Сухов М. Ю. Вероятность и статистика в примерах и задачах. Том 2. Марковские цепи как отправная точка теории случайных процессов и их приложения. М.: Издательство МЦНМО, 2017. 560 с. [Электронный ресурс]: https://11klasov.com/index.php?do=download&id=9346. Доступ 03.11.2020.
- 12. Kirkwood, J. R. Markov Processes. New York, CRC Press, 2015, 340 р. [Электронный ресурс]: https://arxiv.org/pdf/1107.1337v2.pdf.Доступ 03.11.2020.
- 13. Шабалина Л. А. Искусственные сооружения. М.: УМЦ по образованию на железнодорожном транспорте, 2007. 264 с. [Электронный ресурс]: https://docplayer.ru/28515369-Iskusstvennye-sooruzheniya.html. Доступ 03.11.2020.
- 14. Ганиев И. Г. Определение среднего срока службы эксплуатируемых бетонных и железобетонных опор железнодорожных мостов // Известия Петербургского университета путей сообщения. 2008. № 3. С. 184—189. [Электронный ресурс]: https://cyberleninka.ru/article/n/opredelenie-srednegosroka-sluzhby-ekspluatirue myh-betonnyh-izhelezobetonnyh-opor-zheleznodorozhnyh-mostov/pdf. Доступ 03.11.2020.
- 15. Алехин В. Н., Ханина А. Б. Внедрение экспертных систем в процесс проектирования строительных конструкций // Академический вестник Урал-НИИпроект РААСН. 2011. № 2. С. 84—87. [Электронный ресурс]: https://cyberleninka.ru/article/n/vnedrenie-ekspertnyh-sistem-v-protsess-proektirovaniya-stroitelnyh-konstruktsiy/pdf. Доступ 03.11.2020.
- 16. Кремер Н. Ш. Теория вероятностей и математическая статистика. Москва: ЮНИТИ-Дана, 2002. 543 с. [Электронный ресурс]: https://11klasov.com/7824-teorija-verojatnostej-i-matematicheskajastatistika-kremer-nsh.html. Доступ 03.11.2020.