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ABSTRACT
This article discusses an aspect of the 

most pressing problem of 2020, that of the 
spread of infectious diseases. The work 
considers a railway compartment coach as 
a particular object of spread of infectious 
diseases. The objective is to describe spread 
of the epidemic in a railway coach using 
a stochastic model. The model of the coach 
is represented as a network. The processes 
occurring on the network are considered to 

be Markov processes. In this paper, two 
methods of stochastic modelling are applied: 
modelling based on Kolmogorov equations 
and Gillespie algorithm. Kolmogorov 
equations are used to test applicability of 
Gillespie algorithm, which, in turn, is used to 
simulate the model of the coach. The 
obtained data were analysed, and based on 
that analysis it is possible to make a conclusion 
about applicability of the model to the case 
of a typical passenger train.
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In late 2019 and early 2020, the world was 
shocked by massive infections caused by 
the new coronavirus infection COVID-19 . 

In this regard, mathematical models, and 
modelling of spread of infections can be used 
to build stable systems for forecasting and 
counteracting such natural disasters .

The first mention of an epidemiological 
model was formulated by Daniel Bernoulli in 
1760 with the aim of assessing the effect of 
smallpox (variola) vaccination on a person’s life 
expectancy . However, the lack of global work in 
epidemiological modelling had persisted until the 
beginning of 20th century . In 1927, William Ogilvy 
Kermack and Anderson Gray McKendrick 
developed the famous limit theorem, which 
predicts, depending on the potential of 
transmission of infection, a critical proportion of 
vulnerable populations that must be exceeded in 
the event of an epidemic 1 . This was followed by 
the work of Maurice S . Bartlett, who explored 
models and data to identify factors that determine 
disease resistance in large populations . The first 
landmark book on the mathematical modelling 
of epidemiological systems was published by 
Norman T .  J . Bailey, and that resulted particularly 
in recognition of importance of modelling in 
public health systems . Given diversity of infectious 
diseases studied since the mid-1950s, an 
impressive variety of epidemiological models have 
been developed [1] .

Transport is one of the main channels for 
spread of infections that cause disease . Studies 
have shown that air travelling [2; 3] and water 
transport [4; 5] play a huge role in global 
epidemics . In a recent work on spread of 
COVID-19, it was found that the first case, 
recorded in Wuhan, China, in mid- November 
2019, quickly spread to the rest of China through 
«air travel and high-speed railway networks» [6] .

The article deals with a typical railway 
coach as a subject of research . In our case that 
was a passenger coach used within the network 
of the JSC Russian Railways .

The objective of this work is to build 
a stochastic model to describe spread of the 
epidemic in a typical compartment coach 
depending on the source of infection .

1 See, e .g ., Breda, D ., Diekmann, O ., de Graff, W . F ., 
Pugliese, A ., Vermiglio, R . On the formulation 
of epidemic models (an appraisal of Kermack 
and McKendrick) . Journal of Biological Dynamics, 
2012, Vol . 6, Iss . 2, pp . 103–117 . DOI: 
10 .1080/17513758 .2012 .716454 .

To achieve this objective, a model of 
a railway coach was developed based on 
a network approach, where the nodes of the 
network are the elements of the compartment 
coach, between which ribs are installed 
according to the coach structure . The network 
is implemented in Python using NetworkX 
package [7] .

Events occurring on the network are based 
on Markov random processes . The dynamics 
of spread of infections in a coach is realized 
using the method of stochastic modelling, 
namely Gillespie simulation algorithm [8] . To 
test applicability of this algorithm, a model with 
explicit constraints was developed based on 
a special type of differential equations namely 
on Kolmogorov equations .

As a result of numerical calculations, 
dependencies were obtained showing that 
spread of the epidemic in a train car is influenced 
not only by the number of initially infected 
persons and the infection rate, but also by the 
location of infected passengers .

In addition, measures were proposed that 
could slow down the dynamics of spread of 
infection along the coach through isolation of 
the infected compartment .

Statement of the problem
Now there are two main approaches to 

modelling epidemics: the deterministic 
approach [9, pp . 157–182] and the stochastic 
one [10, pp . 8–11] . Deterministic models do 
not consider movement along the coach, which 
has a primary effect on spread of infection . 
However, at the same time, the results of 
calculations within the framework of these 
models make it possible to identify the main 
regularities: whether an epidemic will occur, 
how long it will last, and how large it will be .

Stochastic models allow you to consider 
uncertainty, they are more accurate, but at the 
same time cumbersome and difficult to 
implement . However, this approach is 
increasingly used with the development of 
computational capabilities [11] .

There are many classical deterministic 
models that describe the dynamics of spread of 
epidemics . One of them is SIS model [9, 
pp . 157–163; 10, pp . 6–7], which is based on 
division of people into two groups: S(t) – 
individuals susceptible to the disease at time t; 
I(t) – infected disease vectors at time t . Moreover, 
the total number of people (N = S(t) + I(t)) is 
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fixed . This model is most suitable for analysing 
spread of infection in a train coach because 
a person spends on average about a day in this 
type of transport [data for Russian long-distance 
trains, see below – ed. note] . This time is not 
enough to fully recover, but it is sufficient to get 
infected . It is assumed that the infection rate β 
is proportional to the size of groups S and I, 
while the recovery rate γ is proportional to 
group I only . Then the process of transition of 
individuals from one group to another is 
described using a system of differential 
equations (1):

( ) ( ) ( )

dS(t)
I(t) S(t)I(t);

dt
dI(t)

S t I t I t  .
dt

 = γ − β

 = β − γ


 (1)

To consider the connections between 
people, the deterministic SIS model in this 
work is modified and reduced to stochastic one . 
The train coach is selected as the system . The 
number of people who can be either in the 
group S or I according to the previously 
purchased seats is considered as the state at the 
current moment of time . It is assumed that the 
infection rate of a susceptible individual S 
depends on the infection coefficient τ, and the 
number of infected neighbours k . Being in 
a confined space with a large percentage of sick 
people makes it more likely to become infected 

than if there was just a single infected person . 
The recovery rate for a person from group 
I depends only on the recovery rate γ . If an 
infected individual infects a susceptible 
individual, it does not matter how that person 
has been infected before . The state of the 
system in the future depends only on its current 
state . Thus, the problem is reduced to a Markov 
random process with continuous time and 
a finite number of states . The assumption in 
this model is that the circulation through inter-
car walkways (gangways) is not considered, 
therefore the system is closed, and the number 
of people is equal to N = S + I . Therefore, if 
the system at time t was in a state with the 
number of people (S, I), then the following 
transitions are possible (2–3) [10, pp . 8–11]:
( ) ( )1 1S,I •ä •k• S ,Iτ − +



, (2)

( ) ( )1 1S,I • • S ,Iγ + −


 . (3)

In this paper, long-distance trains are 
considered, so it is assumed that in most cases, 
compartment coaches will be selected for 
a more comfortable trip .

Let us consider a typical corridor coach . 
The scheme is taken from the ticket booking 
section of the Russian Railways website [12] . 
Tickets are sold for seats 1 to 36 . There are no 
tickets on sale for seats 37 and 38 . These are 
the places of the train attendants .

Thus, each coach consists of the elements: 
nine compartments, a conductor’s seat, two 
toilets and two vestibules . The model is built 
using the following assumptions . If an infected 
passenger is in a compartment, then it is highly 
likely that he will infect all his neighbours . 
Therefore, it is considered that the compartment 
is either in group S or in group I. It is necessary 
to distinguish a common area where the 
attendant, who is in contact with all the 
passengers, moves, as well as the passengers 
themselves who go to the vestibule or toilet . 
Passengers for their own purposes go to the 
vestibule and can come across each other there . 
Therefore, vestibules can be distinguished as 
separate zones .

Pic. 1. Scheme of a typical corridor compartment coach used on the network of Russian railways. 
Source: https://www.rzd.ru/.

Pic. 2. Type of the network, where 0 – common 
zone, 1, 11 – vestibules, 2–10 – compartments 

(compiled by the authors). 
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Thus, the train car can be represented as 
a network (Pic . 2), where the nodes are the 
common zone (0), vestibules (1, 11) and 
compartments (2–10), and the ribs are installed 
between each compartment and the common 
zone, between adjacent compartments, 
between extreme compartments and vestibules, 
as well as between vestibules and the common 
zone .

Each of the N nodes can have one of two 
statuses (S or I) . That is, the network element 
is either infected or not . Thus, there are 2N 
possible states . The state of a node changes over 
time . As noted earlier, the problem is reduced 
to a Markov random process with continuous 
time and a finite number of states . Thus, at any 
moment, it is assumed that the only factors that 
can affect the probability of a node’s status 
change are its current state and the statuses of 
its nearest neighbours . A stream of events 
transfers the system from one state to another . 
The time between events is distributed 
exponentially [13, pp . 112–132] . The infection 
rate of a susceptible node (transition rate) 
depends only on how many neighbours are 
infected . The infected vertex is restored to the 
initial state at a rate that does not depend on 
the status of any neighbour .

Let  the system be in a state S
i
 = 

ABCDEFGHIJKL (Pic . 3), where vertices A, 
B, C, D, E, F, G, H, I, J, K, L can take one of 
two statuses (S or I) .

For example, it is known that there are 
infected passengers in the first (Pic . 2, vortex 2) 
compartment, but there are no infected 
passengers in all other parts of the coach, 
therefore, the system is in the state S

1
 = 

SSISSSSSSSSS .

Let us consider the transition from state 
S

1
 =  S S I S S S S S S S S S  t o  s t a t e  S

4
 = 

SSIIISSSSSSS . Note that you can change the 
status of only one vertex in a single step . That 
is, to go from S

1
 state to S

4
 state, you first need 

to get to S
2
 = SSIISSSSSSSS state, or to S

3
 = 

SSISISSSSSSS state . Let us pay attention to 
the transition from S

1
 to S

3
 . The status changes 

the third compartment (Pic . 2, vertex 4) from 
S to I . According to the network shown in 
Pic . 2, the third compartment has a connection 
with the second and fourth compartments, as 
well as with the common area . Since the first 
compartment is infected, intensity of the 
transition from S

1
 to S

3
 is, according to (2): 

0•τ  = 0, that is, even though the first 
compartment is infected, it does not directly 
affect the third compartment . Moreover, 
intensity of the transition from S

3
 to S

4
 is equal 

to 2•τ, since the second compartment has two 

Pic. 3. The system, in the state S
i
 = ABCDEFGHIJKL 

(compiled by the authors).
Pic. 4. State S

1
 = SSISSSSSSSSS, where the vertices 

in group S are marked in blue (lighter colouring in 
black-and-white print version), and in group I – in red 

(compiled by the authors).

Pic. 5. Transition from state S
1
 = SSISSSSSSSSS

 
to 

state S
4
 = SSIIISSSSSSS, where S

2
 = SSIISSSSSSSS 

and S
3
 = SSISISSSSSSS (compiled by the authors).
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infected neighbours . The transition from state 
S

1
 to state S

4
 is shown in Pic . 5 .

In this case, from state S
2
 to state S

1
 one can 

pass according to (3) with the intensity γ .
Thus, a labelled state graph is compiled, 

where the vertices are the possible states of the 
entire system, and the edges are the transition 
intensities . A mathematical model is built 
directly from the marked state graph .

Each of the N vertices can have two possible 
statuses . The system has 2N states . Let X

i
 be the 

probability that at time t the system is in state 
S

i
 .

 
For any moment in time, the sum of all 

probabilities is 
0

1
n

i
i

X
=

=∑ .

Kolmogorov equations are written based on 
the graphs of possible state . The derivatives of 
the probabilities Ẋ

i
 of each S

i
 state are put on 

the left side . On the right-hand side there is the 
sum of the products of the transition intensities 
and the probabilities of states that can be 
reached from the current state minus the total 
intensity of all flows that take the system out of 
this state, multiplied by the probability of this 
S

i
 state [13, pp . 112–132] .

The solution to the system of equations will 
be equal to the probabilities X

i
 of being in each 

state S
i
 at each moment of time t. The obtained 

probabilities are used to calculate the average 
number of infected elements I equal to the sum 
of the products of the number of sick persons 

k by the obtained probabilities X
i
 with the 

number of sick persons k . Since the system is 
closed, the number of receptive elements is S = 
N – I.

In case of N = 12, the number of equations 
is 212 = 4096 . Let us consider the case with the 
same network for N = 7 and 27 = 128 equations, 
that is, the case with six compartments and one 
common zone to analyse the results obtained .

Numerical experiments
For this formulation of the problem 

calculations were carried out in Python 
programming language for a system of 128 
Kolmogorov equations . Input data are initial 
states of the system, coefficients τ and γ . 
Assuming at the moment t

0
 = 0 the initial state 

to be S
i
, the probability X

i
 is taken to be equal 

to one, all the rest probabilities are deemed to 
be equal to zero . The output is the number of 
infected I and susceptible S persons .

If vertex 0 is infected (Pic . 7), and all others 
have status S, then the initial state of the system 
is S

i 
= ISSSSSS . Let us take the recovery rate 

γ = 0,0001, the infection coefficient τ = 1 .
The dynamics of epidemic spread (Pic . 8) 

is consistent with the classical SIS model [10, 
pp . 6–7] . The results are interpreted as follows . 
If there is one infected person I, the recovery 
rate γ = 0,0001, and the infection rate τ = 1, 
the epidemic will develop in such a way that 
after a while the entire network will potentially 
become infected . The examples below compare 
the time it takes for an entire coach population 
to become infected .

The stochastic model based on Kolmogorov 
equations is easy to be implemented and easy 
to be interpreted, however, when expanding 
the network from the considered case N = 7 
to N = 12, it is necessary to take into account 
a larger number of interacting factors . The 
considered model can be used to check the 
results of Gillespie algorithm, which has no 
analytical solution . The work uses the 
implementation of this method for the case 

Pic. 6. Transition from state S
2
 = SSIISSSSSSSS

 
to state S

1 
= SSISSSSSSSSS with intensity γ 

(compiled by the authors).

Pic. 7. Network type with N = 7, where 
0 – common zone, and 1–6 – compartments 

(compiled by the authors). 
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with networks, developed by a group of authors 
in Python programming language [10, 
pp . 381–384; 14] .

The essence of the method is as follows: 
time until the next event (infection or 
restoration of one of the vertices to the initial 
state) is calculated based on total speed of all 
possible events . Time between events is 

distributed exponentially, the parameter is the 
sum of all recovery and infection rates . Then it 
is calculated separately which event will 
happen . The steps are repeated until there are 
infected persons, and the maximum estimated 
time is reached . To achieve accuracy of results, 
calculations are performed on an iterative basis . 
Input data are elements in group I, coefficients 

Pic. 8. The dynamics of epidemic development (calculation for N = 7), initial state S
i
 = ISSSSSS, recovery rate 

γ = 0,0001, infection rate τ = 1, ordinate – number of people (N), abscissa – time (t), 1 – number of infected 
persons I, 2 – number of susceptible persons S (compiled by the authors).

Pic. 9. Comparison of the results of Gillespie algorithm and the model based on Kolmogorov equations with 
N = 7, vertex in the status I = 1 and S

i
 = SISSSSS, recovery rate γ = 0,0001, infection rate τ = 1, ordinate – number 

of people (N), abscissa – time (t), 1 – number of infected people I (Kolmogorov equations), 2 – number of 
people susceptible to disease S (Kolmogorov equations), 3 – number of infected people I (Gillespie algorithm), 

4 – number of people susceptible to disease S (Gillespie algorithm) (compiled by the authors).
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Pic. 10. Dynamics of epidemic development in the absence of initially infected persons (a), with infected common 
zone (b), with one infected compartment (c), recovery rate γ = 0,0001, infection coefficient τ = 0,5, ordinate – 
number of people (N), abscissa – time (t), 1 – number of infected persons I, 2 – number of people susceptible 

to disease S (compiled by the authors).
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τ and γ . The output is the number of infected 
I and susceptible S persons .

The Gillespie algorithm allows discrete and 
stochastic modelling of a system with a small 
number of elements, because each event is 
explicitly modelled . This method is widely used 
in modelling chemical reactions [15] and 
spread of diseases such as HIV [16] .

Since Gillespie method considers all 
possible changes in events, its application is 
justified for systems of limited dimensions due 
to high computational costs . To solve the 
considered problem of spreading the epidemic 
in a train coach, the use of the algorithm is thus 
justified .

Let us compare the previously described 
model based on Kolmogorov equations with 
Gillespie algorithm for N = 7 . Suppose that the 
first vertex is initially infected (Pic . 7, vertex 1): 
vertex in status I = 1, S

i
 = SISSSSS, recovery 

rate γ = 0,0001, coefficient infection τ = 1 .
The solution based on Gillespie algorithm 

shows good coincidence with the solution based 
on Kolmogorov equations (Pic . 9), so this 
method can be applied to the extended network 
with N = 12 (Pic . 2), which is the train model 
in this article .

Results
In Pic . 2 compartments (2–10), a common 

area (0) and 2 vestibules (1, 11) are allocated 
as zones . Since the source of spread of infection 
is a person, the common zone (the conductor 
is taken into account) and the compartment 
can be initially infected . Let us consider and 
analyse the cases of spread of infection .

Below are the cases with the absence of 
infected passengers and a single infected person 
at initial time (Pic . 10) . The rate of recovery is 
considered to be γ = 0,0001, and the infection 
rate τ = 0,5 .

Thus, the epidemic does not spread in the 
absence of infected passengers (Pic . 10a) . The 
greatest risk of its spread occurs through the 
initially infected common zone (Pic . 10b) . This 
is since the coach attendant is usually in contact 
with all the passengers . In addition, passengers 
move through the common area . Within the 
framework of this model, if any compartment 
becomes infected, the epidemic will develop in 
the same way (Pic . 10c) . This is since it is 
assumed that people spend most of their time 
in their compartments, and each passenger 
spends the same amount of time on average as 

compared with other passengers in public zones 
(toilets, vestibules) . However, in subsequent 
works, these data will be specified .

Let us consider four cases when initially 
there are two infected zones in order to analyse 
the influence of initial conditions on epidemic 
development . Since in this setting the 
calculations show that each of the compartments 
has an equal impact on the system, they are 
chosen arbitrarily . Let us suppose that in the 
first case the common zone and the first 
compartment were infected (Pic . 2, vertices 0 
and 2) . In the second case, let us consider any 
two adjacent compartments, for example, the 
second and the third (Pic . 2, vertices 3 and 4) . 
In the third case, let us consider two infected 
compartments located at different ends: the 
first and the ninth (Pic . 2, vertices 2 and 10) . 
In the fourth case, let the infected compartments 
be at close range, but not nearby: the fifth and 
seventh (Pic . 2, vertices 6 and 8) . The results 
are shown in Pic . 11, the rate of recovery γ = 
0,0001 and the infection rate τ = 0,3 .

Analysis shows that the epidemic develops 
most rapidly when the common area and any 
of all compartments are infected (Pic . 11a) . 
In case of two initially infected compartments, 
their location matters . Therefore, with two 
infectious compartments, the most dangerous 
for spread is the case when the infected 
compartments are located at two different ends 
of the coach . This is because toilets and 
vestibules are located at two different ends, and, 
accordingly, the risk of infection upon contact 
with the outermost compartments is higher . 
The safest situation is when two infected 
compartments are side by side (Pic . 11b) . The 
latter case, when two compartments are at 
a short distance (Pic . 11d), entails fewer 
consequences than when infected compart-
ments are at opposite ends (Pic . 11c) . However, 
this location is more dangerous than when 
two infected compartments are close 
(Pic . 11b) .

The cases considered are representative and 
represent a reasonable sample of infection 
cases . This approach can be extended both for 
the case of a larger number of infected areas 
and for a larger number of common areas .

Based on the results of calculations, it can 
be concluded that epidemic spread is influenced 
not only by the number of infected persons I, 
the infection coefficient τ and recovery rate γ, 
but also by the location of the initially infected 
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Pic. 11. Dynamics of epidemic development with infected common zone and the first compartment (a), infected 
second and third compartments (b), infected first and ninth compartments (c), infected fifth and seventh 

compartments (d), recovery rate γ = 0,0001, infection rate τ = 0,3, 1 – number of people infected I, 2 – number 
of people susceptible to disease S (compiled by the authors). 
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passengers . The developed model allows 
considering the location of infected passengers, 
which is a key factor for the train .

This model can be extended to consider 
a train with a dining car .

Numerical calculations have shown (Pic . 
10b and Pic . 11a) that the coach attendant has 
the greatest risk of infection, therefore, the state 
of his health should be considered first . Also, 
special attention should be paid to common 
areas, they should be subject to regular 
sanitization .

Let us consider possible measures that can 
be taken in case of detection of infected 
passengers in a coach within the framework 

of this model . Let one of the compartments 
be infected . The boarding is full, and there is 
no way to transfer passengers to empty 
compartments or seats . As a measure to 
prevent spread of the epidemic in this case, it 
is proposed among other steps to isolate the 
infected compartment from other passengers, 
and to evaluate the effectiveness of this 
assumption . Infected passengers have the 
opportunity to go to the common area, contact 
the attendant, observing safety measures, and 
visit the toilets at a time different from healthy 
passengers .

Let the first compartment be infected 
(Pic . 2, vertex 2), then, considering our 

Pic. 12. Type of the network, where 0 – common zone, 1, 11 – vestibules, 2–10 – compartment. Compartment 
under number 1 (vertex 2) is infected and isolated from others (compiled by the authors).

Pic. 13. Comparison of the results of spread of the epidemic in a coach operating normally and in a coach 
with an isolated infected compartment, recovery rate γ = 0,0001, infection rate τ = 0,3, ordinate – number 

of people (N), abscissa – time (t), 1 – number of people infected I during normal operation of the coach, 
2 – number of people infected I with isolation of the infected compartment (compiled by the authors). 
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assumptions, the model will take the following 
form (Pic . 12) .

Let us compare the dynamics of spread of 
the epidemic following the previously described 
model (Pic . 2) but with its modification 
(Pic . 12) at the rate of recovery γ = 0,0001 and 
the infection rate τ = 0,3 .

Isolation of an infected compartment 
(Pic . 13) will slow spread of infection by almost 
20 % . Thus, an important conclusion is that if 
an infected person is identified in a compartment, 
it is necessary to isolate him .

Let us further consider the dependence of 
the location of the infected compartment and 
the number of isolated compartments on the 
time of infection spread . Let us suppose that 
the first compartment is infected (Pic . 2, 
vertex 2), and to avoid dangerous situation, the 
second compartment is isolated along with the 
first one (Pic . 2, vertex 3) . Also, by analogy, 
suppose that the fifth compartment is infected 
(Pic . 2, vertex 6) . To prevent spread of the 
epidemic, as a preventive measure, the infected 
fifth compartment, or the fourth (Pic . 2, 
vertex 5) and the fifth, or sixth (Pic . 2, vertex 7) 

and the fifth, or all three compartments at once, 
are isolated . In this case, the second 
compartment, like the fourth and sixth, are 
either healthy, or it is assumed that there are no 
passengers in them . Let us compare the results 
obtained, with the recovery rate γ = 0,0001, the 
infection coefficient τ = 0,3 .

Isolation of more than one compartment 
does not lead to significant improvements in 
this model . Thus, the main thing is to isolate 
the infected passengers . In case of such 
situations, this will significantly reduce the load 
on the attendants who are at risk, first of all, 
will bring less discomfort to other passengers, 
and will lead to better control of the situation .

Conclusion. The paper considers a model 
of spread of the epidemic in a railway 
compartment (corridor) coach .

The deterministic SIS model in this work is 
modified and reduced to a stochastic model 
based on Markov random processes with 
continuous time and a finite number of states . 
A graph was chosen to describe the spread of 
the epidemic inside the train coach .

Pic. 14. Comparison of results of spread of the epidemic in a coach with different degrees of isolation, recovery 
rate γ = 0,0001, coefficient rate τ = 0,3, ordinate – number of people (N), abscissa – time (t), 1 – number of 

people infected I when isolating the infected first compartment, 2 – number of people infected I when isolating 
the infected first and second compartments, 3 – number of people infected I when isolating the infected fifth 

compartment, 4 – number of people infected I when isolating the infected fifth and fourth compartments, 
5 – number of people infected I when isolating the infected fifth and sixth compartments, 6 – number of people 

infected I when isolating fifth and neighbouring compartments (compiled by the authors).
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For a simplified case with six compartments 
and one common zone (N = 7), a system with 
27 = 128 equations in the Python programming 
language was compiled and solved .

The model based on Kolmogorov equations 
was used to test the results of Gillespie algorithm, 
also implemented in Python . The consistency of 
the results made it possible to expand the network 
to the case with N = 12, which corresponds to 
the practically operated coaches in the trains used 
on the network of Russian Railways .

The results obtained allowed us to analyse 
the spread of the epidemic under various initial 
conditions and conclude that the location of 
the initially infected passengers affects the rate 
of its spread . It is shown that the greatest risk 
in the spread of the epidemic is represented by 
coach attendants and unregulated use of public 
areas . Measures are proposed in case of 
identifying a single infected compartment in 
the form of isolation of its passengers from 
other passengers . This measure showed an 
improvement in the dynamics of the spread of 
infection by 20% . Numerical calculations show 
that there is no need to isolate more than one 
compartment in this situation .

These results can be used in real transpor-
tation, as well as to track passengers who can be 
vectors of infection by processing data from 
CCTV cameras . These data are needed to 
modify the method used in the work to determine 
the influence of each of the compartments . For 
example, in [17], the authors conducted a study 
of the impact of public urban transport on the 
spread of COVID-19 infection in Singapore 
using transport cards . Data from travel cards 
were used to compile a mathematical model and 
identify passengers who need to be isolated at an 
early stage to prevent the spread of the epidemic .
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