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Background. The growth of oil and oil products 
production, increasing their share in the fuel balance 
of the country, rapid development of the chemical 
industry, including the production of liquid products, 
have caused a significant increase in transportation 
of bulk cargoes. On transport hundreds of incidents 
involving dangerous goods occur annually: leakage 
of oil products, chemical, toxic and other hazardous 
substances posing a threat to human safety and the 
environment.

Among emergency situations a special place is 
occupied by fires and explosions associated with 
transportation of flammable liquids. In recent years, 
70% of fires occur in the transport sector on the rolling 
stock.

During loading and unloading of oil cargo at 
railway stations potentially dangerous situations 
emerge related to fumes of flammable liquids into the 
environment [1]. This is because the manhole of the 
tank, delivered to the pier for loading of light oil 
products in an open way, is in such a state for a long 
time [2], which leads to rapid formation of potentially 
explosive areas.

In order to avoid the scenario of an emergency 
[3] we have carried out research aimed at eliminating 
a source of ignition.

Objective. The objective of the author is to 
consider frictional ignition in transport and problems 
accompanying this process.

Methods. The author uses general scientific and 
engineering methods, mathematical calculation, 
evaluation approach, analysis.

Results. One common source of ignition of 
flammable steam-gas mixtures are friction particles 
[4], which arise by friction or collision of working 
bodies of technological machines, mechanisms, as 
well as in the performance of technological and repair 
operations by service personnel.

Friction sparks are sparks of impact and friction 
which are incandescent metal particle of about 100 
microns in size [4], the temperature of which is 
between metal melting temperature.

Friction particles formed as a result of relative 
movement of two contacting surfaces depending on 
degree of dispersion, initial temperature, presence 
of an oxidant, and other factors may be heated to a 
visible glow temperature [5]. Friction metal sparks in 
certain circumstances are heated to a temperature 
at which particles ignite [6].

For some substances, the mechanism of particles 
heating to a temperature at which heat transfer to the 
combustible gas mixture becomes sufficient for 
ignition, is connected with catalytic properties of the 
particle surface. After warming up the critical volume 
of the mixture to the ignition temperature, the flame 
spreads throughout its volume, but it is a source of 
total risk.

As a result of long-term operation of bulk cars on 
the surface of metals and inside them cracks appear. 
The tanks are strengthened, repaired, however, 
despite this, strain aging processes occur, which 
inevitably leads to embrittlement of metal and 
increased sparking [7].

Ignition of the gas-air mixture is possible if the 
amount of heat given to the surrounding space by one 
or more sparks, satisfies the conditions of ignition of 
combustible mixture [8, 9]. The mechanism of ignition 
of flammable mixtures by frictional sparking remains 
understudied.

It is known that intensity and ignition ability of 
friction sparks depend on friction regime and collision 
of two bodies, physical and mechanical, chemical and 
physical properties of contacting surfaces, and other 
factors. However, not all friction sparks can ignite 
gas-air mixture.

The degree of dispersion of friction particles flying 
in space with a gas-air mixture, the number and power 
parameters are determined by load application speed 
and its value, as well as the physical and mechanical 
properties of materials of interacting bodies and 
surface coatings.

Intrinsic safety measure of work with tanks for 
transportation of flammable liquids may be some 
criterion that depends on intensity of sparking. This 
intensity for various materials is associated with the 
probability, which is determined experimentally. A 
similar problem of spark ignition of gas-air mixture is 
considered, for example, by D. V. Botvenko [9].

During simulation we used an analytical method 
of research using the following basic equations [8–
12].

1. Newton-Richman law for convective heat 
transfer:
q = α∆T.  (1)

Here, the density of the heat flow to the 
environment from the surface of a moving heated 
friction particle is proportional to the surface 
temperature difference of the friction particle and its 
surrounding gas environment (temperature drop).

The proportionality coefficient α is a coefficient of 
heat transfer, heat flow density at a temperature 
difference of 1 K, i. e. the amount of heat given off 
from the unit surface area per unit of time at a single 
temperature difference. The heat transfer coefficient 
depends on the type and temperature of a heating 
agent; temperature drop, type of convection and the 
flow regime (laminar or turbulent); surface condition 
and direction of flow; body geometry.

Equivalent record of Newton-Richman law (1) in 
the differential form:

 .
d

Q T
dt S

α∂
= ∆

∂
  (2)

We can derive an integral formula from the 
differential (2). The amount of heat given through the 
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area at the interface of body area S for the time t, is 
proportional to the temperature difference between 
these bodies (assuming that it remains constant 
during this time):
Q = αtS∆T.  (3)

2. Fourier law of heat dissipation intensity by 
heated bodies in the environment (thermal conductivity 
law): in steady-state energy flux density transmitted 
by thermal conductivity is proportional to the 
temperature gradient:

( ) .q grad Tκ= − ⋅


  (4)

where q


 is a heat flow density vector (the amount 

of energy passing in unit time through unit area 
perpendicular to each axis);

κ is a thermal conductivity coefficient;
T is temperature.
Minus on the right shows that the heat flow is 

directed opposite to the temperature gradient vector 
(i. e., in the direction of the fastest temperature 
decrease).

In the integrated form the same expression takes 
a different view (if we talk about a steady heat flow 
from one edge of the parallelepiped to the other):

S T
P

l
κ ∆

= − ,  (5)

where P is total power of heat losses;
S is area of the parallelepiped section;
∆T is temperature difference of edges;
L is length, i. e. the distance between the edges 

of the conditional parallelepiped.
Fourier law does not take into account the inertia 

of the thermal conductivity process, that is, in this 
model temperature change at some point instantly 
spreads all over the body. It is not applicable to 
describe high-frequency processes (and, accordingly, 
processes which Fourier expansion has significant 
high-frequency harmonics). The inertia in the transfer 
equation (first introduced by Maxwell) is taken into 
account by the introduction of the relaxation term 
(proposed in 1948 by Cattaneo):

( ) .
q

q T
t

τ κ∂
= − + ∇

∂





 (6)

If relaxation time τ is negligible, then this equation 
becomes Fourier law (4).

Note that Newton-Richman law (2) is a type of 
boundary conditions (conditions of the third kind), 
which are placed in heat transfer problems. In this 
case, considering Fourier law it can be written as:

( )out in

T
k T T

n

∂
= −

∂
.  (7)

And again: this law describes the situation only on 
the boundary of the body, inside the temperature is 
determined by its thermal conductivity. Heat flow 
inside the body is determined by Fourier law (4) that 
allows to find the distribution, solving thermal 
conductivity equation.

If internal thermal conductivity is much greater 
than the heat transfer coefficient (small Biot number), 
then inside the almost uniform temperature is set (if on 
the entire surface it is also the same), and then body 
cooling equation can be written as:

( ) .out

T
k T T

t

∂
= −

∂
  (8)

Here coefficient
S

k
C

α
= , where C is heat capacity of the body.

From this equation it is easy to get that temperature 
of the body in such a situation would approximate the 
exponent to ambient temperature T

out
:

T(t) = T
out

 + e–kt (T
0
 –  T

out
).  (9)

3. Criterial equation describing the process of 
dissipation of accumulated heat in the forced 
convection;
Nu = 2 + 0,03 Pr0,33 Re0,54 + 0,35 Pr0,36 Re0,58,  (10)
where Nu is Nusselt thermal criterion;

Pr is Prandtl thermal criterion;
Re is Reynolds criterion.
Criterion Re characterizes the motion of heated 

friction particle in gas-air medium and is given by:

Re f eq

gam

dυ
ν

= ,  (11)

where υ
f
 is speed of a heated friction particle relative 

to gas-air medium (m/s);
d

eq
 is characteristic size (equivalent diameter of 

a particle) (m);
ν

gam
 is kinematic viscosity of a gas-air mixture 

(m2/s).
Speed of motion of a heated friction particle 

depends on the initial pulse obtained by a particle 
upon contact of two bodies.

Prandtl thermal criterion characterizes the ability 
of heat to spread in the environment and is determined 
by the formula:

Pr gamν
χ

= ,  (12)

where χ is thermal conductivity coefficient:

pс

λχ
ρ

= ,  (13)

where λ is thermal conductivity;
ρ is density;
с

р
 is specific thermal capacity of a gas-air mixture.

4. Thermal conductivity equation with two sources 
(as a result of cracking of the surface layer and the 
work of friction forces) with appropriate boundary and 
initial conditions –  to determine the temperature of 
friction sparks.

Preliminary for analysis of the energy to ignite a 
spark we estimate [10] possible heating temperature 
of friction particles. In this case, we assume that in 
case of impact the interaction of two bodies occurs, 
both in friction of a body, moving on the surface of 
another body with some known speed V

0
 under the 

action of the pressure force F.
The friction force F

fr
 = kF, where k is friction 

coefficient.
If under the action of friction particle travels over 

the distance S, the work done by the friction force A 
(per time unit, i. e. power) will be:

0

1 1

2 2frA F S kFV= = .  (14)

An important feature of the friction process is a 
discrete stochastic nature of frictional interaction in the 
contact zone between the contacting surfaces. This is 
due to the presence of the original micro-relief of surfaces 
in contact. During the initial contact the size of patches of 
actual contact patch (ACP) will be conditioned by the initial 
relief of rubbing surfaces. Depending on the applied load 
F and physico-mechanical characteristics of the 
contacting materials ACP varies in a wide range from 
fractions of a percent to tens of percent of the total 
(nominal) area and can be defined by the formula:
S = F/γ *,  (15)
where γ * is maximum stress limit.
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The thin surface layer undergoes a noticeable and 
significant deformation and structural changes. In the 
plastic materials deformation varies from 10–15% up 
to 500–1000%. In brittle materials the surface layer 
will break. Thus, in friction input energy will be 
dissipated into heat only in contact patches. Therefore, 
the temperature calculation can be made for the 
contact area only.

If the value of the normal force F can be replaced 
by the value of material strength, meaning that the 
energy density is calculated at the contact patch, it is 
possible to get:
A = N = k V

0
γ *.  (16)

and one external parameter remains –  speed V
0
.

If we assume that the thickness of the active layer, 
in which deformation processes are developed as a 
result of friction, is significantly smaller than the size 
in longitudinal and transverse directions, the thermal 
conductivity problem can be considered as one-
dimensional.

Based on the fact that two heat sources are 
considered, we write the thermal conductivity 
equation with two sources, namely:

1) w –  as a result of cracking of the surface layer,
2) q –  as a result of frictional forces,
and with the relevant boundary and initial 

conditions:
2

2

T T w

t x c
κ

ρ
∂ ∂

= +
∂ ∂

,  0 < x < α, t > 0;  (17)

T
q

x
λ ∂− =
∂

, T
t =0

 = 0;  (18)

a
c

λκ
ρ

= .  (19)

Heat source w should operate only in a thin layer 
(from10 to 100 microns). We represent it in the form 
of:

 .xw
Ae

c
α

ρ
−=   (20)

The calculations [10] found that at the dynamic 
contact speed in the range of 1 to 10 m / s theoretically 
established contact patch temperature reaches the 
melting point during 10–4–10–6 seconds at a 
deformation thickness, reaching 500–1000%.

High thermal conductivity contributes to rapid 
removal of heat from the contacting surfaces and 
reduction of intensity of the contact temperature rise. 
If a solid alloy has a low thermal conductivity, the 
released heat is accumulated on the contact 
surfaces, resulting in rapid growth in contact 
temperature.

Friction sparking is associated with the conversion 
of a part of kinetic energy of mechanical interaction 
in warmth followed by exothermic oxidation and 
heating of particles. With increasing particle speed 
the contact temperature grows.

To determine the ignition ability of friction sparks 
and to assess their hazard in the analyzed combustible 
medium, we consider [12] thermal processes 
occurring during the motion of a single heated particle 
in gas-air medium.

The density of the heat flow q
f
 from the surface of 

a moving heated friction particle into the environment, 
according to Newton-Richman law (1) is proportional 
to the temperature difference between the surface of 
the friction particles t

f
 and the surrounding gas-air 

medium t
gam

, i.e:
q

f
 = α(t

f
 –  t

gam
),  (21)

where α is heat transfer coefficient (W/(m2•°C));

t
f
 is surface temperature of a friction particle (°C);

t
gam

 is a temperature of surrounding gas-air 
medium (°C).

Equation (21) allows to determine the quantity of 
heat q

f
 which per unit of time is removed from the 

surface to the environment.
As follows from Fourier’s law (4) from the surface 

of the particle friction the flow is removed

( ) ,f
f gam f gam

t
q grad t

n
λ λ

∂
= − = −

∂
  (22)

where n is a normal to the isothermal surface.
From (21) and (22) it follows:

( ) ,f
f gam gam

t
t t

n
α λ

∂
− = −

∂
  (23)

or ( ) .f
f gam

гвс

t
t t

n

α
λ

∂
= − −

∂
  (24)

Expression (24) is a mathematical description of 
the boundary conditions of the third kind.

To determine the heat losses Q of a moving friction 
particle over time τ

f
, on the basis of (21), we obtain 

the expression:
Q = α(t

fi
 –  t

gam
)Sτ

f
,  (25)

where t
fi
 is initial temperature of surface of a friction 

particle;
S is a surface area of a heated particle.
The process of removal of the accumulated heat 

by a moving friction particle in the gas-air medium 
with forced convection is characterized by a criterial 
equation (10).

Speed of a heated friction particle υ
f
 depends on 

the initial pulse obtained by a particle upon contact of 
two bodies.

The value of heat transfer coefficient α, related to the 
surface of the heated friction particle can be determined 
on the basis of the dimensionless Nusselt criterion (10):

 .eq

gam

d
Nu

α
λ

=  (26)

From (26) the heat transfer coefficient is:

 .gam

eq

Nu

d

λ
α =   (27)

Let’s estimate the heat energy accumulated by a 
moving friction particle through the particle mass M 
and its specific heat capacity с

f
:

E = Mc
f
t

f
.  (28)

At the same time the mass of the particle is 
represented as:

3

 .
6

eq
f f

d
M V

π
ρ ρ= = ⋅   (29)

In the expression (29): V is volume of the friction 
particle, ρ

f
 is its density.

Let’s substitute (29) into (30):
3

 .
6

eq
f f f

d
E c t

π
ρ= ⋅   (30)

Conditions of ignition of a gas-air mixture by a 
cloud of sparks is:
Q ≥ Q

ign
.  (31)

To assess the intrinsic safety of works we set the 
criterion K:

 .f

ign

Q
K

Q
Σ=   (32)

At К = 1 a gas-air mixture is in critical condition in 
relation to friction ignition, at К > 1 –  in dangerous, 
and at К < 1 –  in safe.
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As a measure of intrinsic safety of work with tanks 
for transportation of flammable liquids may serve a 
criterion (34), which depends on intensity of sparking.

Conclusions. The analysis suggests that more 
importance should be given to spark-producing ability 
of materials, because due to a number of breaches 
of processes safety the occurrence of sparks can lead 
to a crash.

The urgency of the issue increases even more if 
we take into account the statistics of operation of 
freight fleet in circulation on the Russian railways. To 
date, tens of thousands of oil and gasoline tanks are 
in service with extended and double extended period 
of operation. The risk of an emergency related to 
inflammation of gas-steam-air mixtures during 
loading-unloading of oil products for such tanks is 
extremely high.

Apart from the existing arrangements to prevent a 
dangerous situation, it is necessary to pay particular 
attention to the need for additional technical measures 
to prevent the occurrence of potentially explosive area 
during technological operations with oil and petrol tanks.
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