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Background. In connection with development of 
high-speed rail transportation has become of 
particular importance creation and operation of high-
tech complex to control quality of track state directly 
from the moving track. The theoretical basis for this 
method of control is set out in [1–5] and scientific 
works cited in them. It is important not to contrapose 
different ways of diagnostics, they should not 
compete, but complement each other. Methods of 
integrating them into a single transport system are 
intended to be a guide for experts, simulating the 
processes of defect detection [6].

Objective. The objective of the authors is to 
estimate state of railway track using mathematical 
methods.

Methods. The authors use general scientific and 
engineering methods, comparison, mathematical 
methods.

Results.
1. Preliminary notes
Our main goal is to identify previously unknown 

mathematical properties of main theoretical models 
of beams (sleepers), which play an important role in 
the calculations associated with analysis of vibration 
spectrum when rolling stock is moving on tracks to 
present ideas on the principles of building control 
systems.

Remark 1. We note that the experience of 
computer processing and analysis of large volumes 
of dynamic data with complex three-dimensional 
internal structure is stored, for example, in the use of 
different types of brain imaging, processing of 
neuroimaging and bioinformatics data in the 
biomedical field. Mathematical statistics methods and 
comparison with standards are used, which leads to 
success. There are a lot of similarities with our 
problem, although in it waves and vibrations in 
different frequency ranges are studied. In both cases 
there is a priori information about the structure of 
objects.

Note 2. The famous mathematician, expert in the 
field of dynamical systems A. S. Bratus expressed his 
support for establishment of a complex, which 
monitors the state of the track from rolling stock, on 
the basis of currently available technical equipment, 
high-tech, computing systems, GLONASS system. 
Mathematical calculations of fluid flow in complex 
branched pipes, a wide range of temperatures and 
pressures, he said, still remains a challenge. 
Attraction for numerical calculation supercomputers 
and multithreaded data processing methods requires 

a lot of forces, energy and financial resources. But 
this does not mean that we should be afraid to look 
for solutions on a collision course. It is not without 
self-irony scientist says that if people were waiting for 
mathematicians to prove all their theorems related to 
emerging challenges, and the water pipeline might 
not exist today.

The task to identify defects that cause changes in 
the spectrum of longitudinal, vertical and transverse 
vibrations occurring during the passage of rolling 
stock on rails, is called «reverse» in mathematics. 
Multi-dimensional «direct» boundary value problems 
with a variety of diverse options for setting boundary 
conditions and different distributions in the space of 
forces are usually very complex. «Reverse» tasks of 
such complexity cannot be solved currently. From our 
point of view, we can restrict the calculation of one-
dimensional, simpler «direct» tasks. Mathematical 
modeling in this case, allows to identify main effects 
and to have tips that can be used to conclude on 
appearance of hard-detectable defects and to locate 
them in space. Early detection of defects helps to 
avoid accidents, loss of property, not to mention the 
loss of health and life of humans.

In [1–5], there are numerical studies of dynamics 
of interaction of the train with sleepers, which are 
considered as beams. They show that the presence 
of voids under sleepers and roadbed destruction 
significantly affect the distribution of dynamic loads 
and consequently on oscillation spectrum.

Many calculations, both ours and of other authors, 
suggest that the emergence of defect leads to 
additional resonance and dispersion in the vicinity of 
main peaks increases. Similar repetitive features may 
become a basis of a method to identify hard-
detectable recognizable defects, they can localize 
track section by comparing the recorded spectrum 
of transverse, vertical and longitudinal vibrations with 
respective reference spectra obtained previously on 
the serviceable section.

As an example one of simple oscillation spectra 
and dependence of acceleration from frequency 
and presence of various defects is shown in Pic. 1. 
Summing up the results of such variants of 
numerical mathematical modeling, we can conclude 
that an important effect has been found: with 
increase in the number of sleepers, «hanging» on 
a rail, that is deprived of support, the dispersion in 
the vicinity of frequencies of major resonance 
increases and additional resonances appear at 
higher frequencies.
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ABSTRACT 
 Building hardware complex diagnostics of railway 

track on the basis of analysis of dynamic processes in 
the movement of train does not have alternatives at 
the moment. Similar methods have long been used in 
the operation of aircraft and other fields of technology 
and mechanical engineering, biomedical field. The 
ability  to  simplify  calculations  of   model   tasks   is 
provided by authors’ additions to the theory of basic 
models of «Timoshenko beam» in different situations. 

Inhomogeneous system of linear differential equations 
with partial derivatives of the second order is 
accurately reduced to sequence of solution of two 
classic mixed problems –  derived equations: 
hyperbolic and Klein-Gordon-Fock. It is shown that 
the system has two scales (two basic frequencies). 
The effect of abnormally rapid fluctuations oscillations 
is explained. A semi-analytical –  numerical method is 
offered that allows to compare effects caused by 
different boundary conditions. 
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The lower curve in Pic. 1 reflects an ideal situation, 
when there are no defects. The upper curve corresponds 
to the presence of two «suspended» sleepers, without 
relying on ballast. Similar curves of spectra for other 
defects are in other mentioned works.

Note 3. In numerical modeling specialists use 
implicit difference schemes and the Ritz variation 
method for boundary value problems. In analytical 
construction of solutions by decomposition into 
Fourier series [7], the authors lament the fact that for 
the embodiment with sufficient accuracy it is 
necessary to summarize 32000 terms. That is, the 
Fourier series converges slowly.

Note 4. Numerical experiments for solution of 
direct multi-dimensional problems have been 
described in a number of mentioned works. A wide 
variety of properties, geological, geographical, 
related to infrastructure of surrounding area and as a 
result a variety of possible boundary conditions makes 
dynamic mathematical «direct» models ineffective. 
The solution of «reverse» problems of such a 
complexity is a more difficult problem.

Note 5. A new element from the point of view of 
mathematical physics and mechanics of beams is 
factorization of partial differential equations of 
«Timoshenko beams» model. If a reader is aware of 
works, where such factorization is implemented, when 
please let the authors know. The younger generation, 
not knowing analytic operator methods immediately 
rushes to a computer.

Factorization procedure makes it possible to 
combine a large number of tasks that are different in 
parameter values (because of differences in physical 
constants) and a number of terms in them, which value 
and influence on a solution can be adjusted using 
dimensionless parameters and boundary conditions. 
Formulas are obtained compact, easily foreseeable 
(six integral terms) and allowing to compare the effect 
of different boundary conditions. Obtaining numerical 
results is reduced to calculation of integrals using 
classic formulas.

Operator methods are described in the works of 
V. P. Maslov, M. V. Karasev, V. G. Danilov, A. Hadamard 
and others [8–12], where it is proved that factorization 
leads to consistency in solving classical problems for 
inhomogeneous linear hyperbolic equations and 
inhomogeneous linear Klein-Gordon-Fock equation, 
and show that there are two basic scales, two 
characteristic speeds, two base frequencies.

2. Statement of a problem
Equations describing oscillations in «Timoshenko 

beam» models have a view of a system [2, p. 15–38]:
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Here Z(x, t), Θ(x, t) are functions of deviation of 
midline and angle of rotation of the cross section, 
respectively;

E is elasticity modulus on compression [N/m2];
I is reduced moment of inertia of cross-section 

[m4];
k is dimensionless Timoshenko coefficient;
A is area of cross section [m2];
G is elasticity modulus on shift [N/m2];
m = Iρ/r2 is distributed density;
ρ is specific density [kg/m];
P is longitudinal force applied to a beam.
Note that between dimensions of functions Z(x, t), 

Θ(x, t) the relation[Θ(x, t)] = [Z(x, t)] /[m] is correct. 
For the system (1) in the cited works are considered 
mixed boundary value problems in different situations.

3. Splitting of the system (1)
Let’s show that mixed problems for the system (1) 

have an exact solution.
Theorem 1. Let there be given a mathematical 

«Timoshenko beam» model (1). Then, one of the 
functions is clearly expressed through the other:
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Here h(t) is arbitrary continuously differentiable 
function.

To determine the function Ф(x, t) it is necessary 
to solve a problem with boundary conditions and initial 
conditions for inhomogeneous linear fourth-order 
partial differential equation:

Pic. 1. Acceleration of rail (db / g) due to oscillation frequency (Hz).
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Proof.
Boundary conditions for the system (1) can be 

first, second or third kind. Since the first equation of 
the system (1) is non-uniform, and the function f(x, t) 
contains the sum of generalized Dirac delta functions 
in fixed and mobile points x = v

0
(t)t, which moves 

unevenly, the procedure for establishment of the 
fourth order equation is different from the 
establishment in case of a homogeneous second 
equation (1). The second equation cannot be 
differentiated. Let’s differentiate the first equation of 
the system (1) with respect to x and express the 

second variable 
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Integrating (4) twice on variable x , and we obtain 

the formula (2).
The function h(t) occurs in integration. One of the 

constants of integration is set equal to zero. Thus, one 
function in the system (1) is expressed by the other –  
formula (2). After differentiating (2) with respect to t 
from the second equation (1) follows (3).

4. Application of factorization to the equation 
(3).

The aim of factorization procedure is to present 
the equation (3) in the form

1 2 0( , ) ( , ) .L L Y x t F x t  = 

Let’s conduct nondimensionalization of the 
equation (3). Let’s denote via x = x

0 
χ, t = t
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characteristic size, time and characteristic value of 
the function Ф(x, t) respectively. We make a change 
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From further analysis it appears that there are two 
dimensionless parameters
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Theorem 2. Let’s there is an equation (3) and 
parameters (6) are defined. Then, for construction 
of solutions of the equation it is necessary to solve 
sequential ly two standard mixed problems, 
namely: for linear hyperbolic partial differential 
equation
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and mixed problem for Klein-Gordon-Fock equation
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Here M
0 

= const ≠ 0.
In the second embodiment factorization method 

gives result, which is demonstrated further.
Theorem 3. Let there is an equation (3) and two 

dimensionless parameters (6). Then, for construction 
of solutions of the equation it is necessary to solve 
sequentially two standard mixed problems, namely: 
for Klein-Gordon-Fock equation
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and mixed problem for linear hyperbolic equation
П
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Proof of theorems 2, 3. Let’s consider Klein-

Gordon-Fock equation for the function Θ(x, τ) with 
undetermined constant coefficients M
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, c
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the second derivative with respect to τ:
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Thus Y(x, τ) is a function that is determined by the 
problem for the equation (7) or (9).

After calculating four derivatives of the function 
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Substituting in the equation (3) –  and in the first 
case (for theorem 2) we have
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After introduction of parameters (6) follow 
equations (7), (8).

In the second case (for theorem 3), we obtain
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After introduction of parameters (6) follow 
equations (9), (10).

Then it is necessary to set boundary and initial 
conditions and perform calculations of convolution 
integrals with the right side and boundary conditions 
by analytical and numerical methods. Calculations at 
constant values, relating to railway track [2, 3], show 
that the ratio of parameters (speed of waves and 
frequencies) μ / a >50. Coefficient a2–μ2<0.
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In f (x
0 
χ, t

0 
τ) there are Dirac delta functions, so 

integral with them are easily calculated. Characteristic 
is the case described in theorem 2, when in the first 
phase of mixed problem (7) is solved with smaller 
parameter a. Then the calculation of the first task 
makes it possible to obtain the envelope of low-
frequency vibrations. Calculation of convolution 
integrals of the second task (8) «fills» the resulting 
structure with high-frequency oscillations and little 
changes of the envelope curve of low-frequency 
vibrations. Thus, the analogy with amplitude 
modulated structure having two base frequencies, 
two scales is explained [9].

In [11, p. 260] there are formulas of the third 
boundary value problem for a linear hyperbolic 
equation with a speed a in case of a rod with elastic 
fixed endpoints with different stiffness coefficients k

1
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k
2
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The solution Y(χ, τ) is determined by the formula
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where λ
m

 are positive roots of the transcendental 
equation ctg(λl) = (λ2–k
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)). The principal 

term of the expression for approximate positive 
eigenvalue has a form
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On the other hand in case of oscillations of the 
rod, one end of which is rigidly fixed and the other is 
free, we have a mixed boundary value problem. In [11, 
p. 261], there are formulas for a linear hyperbolic 
equation with a speed a in the range 0 ≤ χ ≤ l. Suppose 
that initial conditions (13) and boundary conditions
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The solution Y(χ, τ) is determined by the formula, 
s i m i l a r  t o  ( 1 5 ) ,  w h e r e  t h e  f o u r t h  t e r m 
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Green function in this case has a form
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where positive λ
n
 = π(2n+1)/(2l). Comparing the latter 

expression with (16), we find an obvious difference in 
generated frequencies.

Pic. 2 shows distribution of response bending 
moment of a monolithic sleeper lying on the ballast 
[5]. The positive direction of the y-axis is focused 
down to bring the graphics in line with the physical 
meaning and images 1 and 2. The first solid curve, 
the top curve corresponds to the ideal support sleeper 
without a defect, in case of evenly distributed load on 
the roadbed (picture 1). Lower curve 3 corresponds 
to the calculated torque value. Curve 2 corresponds 
to the image 2, when 100% of the load is distributed 
on both ends of sleepers and sleeper’s middle is 
deprived of support.

We use Pic. 2 to show what kind of function f
0
(χ), 

f
1
(χ)can be selected as initial conditions in model 

calculations by the formula (13).
Let’s explain the meaning of Pic. 3 [5]. To do this, 

pay attention to the image 2 in Pic. 2, where the middle 
of a sleeper has no support on ballast. Let’s take 
conditionally moment diagram of the right side of the 
sleepers support equal to one hundred percent. In Pic. 3 
curves 1, 2 and 3, 4 show distribution when the right side 
of the sleeper has a support of 0, 20, 80 and one hundred 
per cent, respectively. Zero percent of the support 
means that the right side of the sleeper does not rest on 
the roadbed, but hangs on the rail. It can be seen that 
the difference of boundary conditions at 20 percent or 
more significantly alters the characteristics that is 
immediately reflected in the vibration spectrum.

As for the equation problem is l inear, in 
mathematical modeling boundary and initial conditions 
can be divided between the components in series of 
tasks, such as (7) and (8). That is to put in the first 
task (7) zero boundary conditions and to solve the 
Cauchy problem. In this case, the last two terms in 
(15) become zero.

Pic. 2. Response options of a bending moment of a 
sleeper, lying on the ballast. 
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Then for the equation (8) initial conditions can be 
set equal to zero and the boundary problem can be 
solved by formulas similar to (15), which are given in 
[11, p. 263].

Further interest to the formulas for solving KGF 
equation arises when the dimensionless parameter 
to dissipation function (flow) K2 = x

0
2μ4/(r2(a2–μ4)>>1 

is large. Calculations of values K2 for physical 
characteristics of corresponding to discussed railway 
topics in equations (8) and (9) shows that there is just 
such a case. And then abnormally rapid oscillation of 
solutions is real [9, p. 26].

The fundamental solution (Riemann function) for 
the equation
П

μ 
Θ(χ, τ)+K2Θ(χ, τ) = δ(χ, τ)   (20)

has a form

2 2 2 2
0

1
( , ) ( ) ( ) .

2
J Kχ τ τ χ θ τ χΘ = − −   (21)

Here j
0
 is Bessel function, δ(χ, τ) is Dirac delta 

function, Θ is theta Heaviside function equal to unity 
when τ2 > χ2 and zero when τ2 < χ2. In [9] it is shown 
that the distance between the nearest roots is an 
indicator of speed of oscillation of functions. With 
limited values of τ and χ and τ2–χ2 ≥ const > 0 this 
distance has an order of 1/K, which follows from the 
asymptotic behavior of the Bessel function. Moreover, 
the oscillation rate increases sharply in the vicinity of 
the characteristics τ = ±K.

In the cited paper [9] it was proven that the 
distance between neighboring roots on the line τ = χ 
is of order О (1/K2), which indicates an abnormally 
rapid oscillation. This effect is present in the discussed 
problem.

5. Exact solution of the problem of rolling 
wheels on the rail with wavelike wear

In the second model cycle, the researchers 
considered as a beam railway rail itself with wavelike 
wear. The dynamics in the coordinate system moving 
with constant speed is studied. It is noted that another 
source of vibrations are horizontal and vertical 
unevenness of left and right rails. In «weldless» track 
welding places have greater hardness and is worn 
less than the rail itself, while rebounders are created.

In [7] Dirac delta function is evaluated at a point 
moving with constant speed, because for construction 
of a solution in this paper is used the transition to the 
appropriate coordinate system and then the solution 
can be expanded in Fourier series. Note that, in 
practice, it is difficult to provide a uniform movement 
of the wheel set. See note 1.

As a result, we derived an equation describing the 
steady vertical rail fluctuations. Designated therein 
by y(x, t) upward transverse deflection of a rail, which 
has a bending stiffness E I and is supported by uniform 
base with hardness u and toughness r, lies at the basis 
of the formula:

4 2

4 2
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( , )
( , ) ( , ) .

y x t y x t
E I m

x t

y x t
r u y x t F x t

t

∂ ∂
+ +

∂ ∂
∂

+ + =
∂

 (22)

In our case, the function F(x, t) in contrast to [7] 
contains Dirac delta function, which sets the position 
of a force applied at the point x = v(t)t moving with 
variable speed v(t). The solution allows for analysis of 
motion with variable speed. In the simulation, it is 
possible to specify different laws of speed change and 
to analyze their effects on the vibration spectrum. In 
[7] by m is denoted the linear density of the distributed 
masses of rail and ballast.

Theorem 4. Given a mixed problem with boundary 
conditions for the equation (22). Then the solution has 
a form
y(x, t) = Z(x, t)exp(rt/(2m)),   (23)
where the function Z(x, t) is an exact solution of the 
mixed problem for linear standard hyperbolic fourth-
order equation

2 4
2

2 4

( , ) ( , )
( , )

exp( / (2 )) ( , ) .

Z x t Z x t
m a K Z x t

t x

r t F x tρ

∂ ∂
+ + =

∂ ∂
= −  (24)

Here a2 = E I, K = (4uρ–r2)/(4m2).
Proof. In contrast to [7] the frequency of rail 

oscillation is determined by solution of the conjugate 
problem for eigenvalues λ

m
 for an ordinary differential 

Pic. 3. Distribution of dynamic moment on a left part of a sleeper.
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equation of the fourth order φ(IV)(x)–λ4φ(x) = 0 with 
appropriate boundary conditions [11, p. 533]. Green 
function has a form

2 4
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1 2

3 4
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−

∑

∫
 (25)

Here, the constants C
i
, i = 1,…,4 are determined 

from boundary conditions. The rate of eigenfunction 
is calculated by Krylov formula. Hence the oscillation 

frequency 2 4 , 1,2, . . .na K nλ + =  At values of ρ = 78 

[kg / mm], u = 34 106 [N / m2], E I = 4 106 [N / m2], r = 
2 104 [N s/ m2], from [7] we get the value of parameter 
K>600. Consequently, in this case, there is an effect 
of abnormally rapid oscillation.

Conclusions. In railroad diagnostic centers 
various local methods and integral method are used, 
the supporters of which are the authors of this work. 
If this method had been consistently and universally 
applied, then a severe accident, a similar to the 
accident in Moscow metro July 15, 2014, could have 
been prevented. In most cases the diagnostician is 
external source of vibrations, and in the present 
embodiment oscillations with frequencies generated 
by the moving object are used.

Analysis of results of mathematical modeling leads 
to the following conclusions:

a) rail roadbed defects are recorded more or less 
explicitly in one of the spectra of vertical, longitudinal 
or transverse vibrations in a wide frequency range;

b) in the vicinity of the main resonances and other 
defects increase dispersion;

c) taking this into account it is possible to build 
software and hardware complex for control of the 
state of railway roadbed with rolling stock.

In our opinion, in general terms, the complex 
should include:

– Creation of a reference database of spectra of 
vertical, longitudinal or transverse vibrations with 
reference to the location of the i-th section using wide 
/ frequency sensors at speed recommended for 
specialists;

– Selection for each i-th section of reference 
control points (j = 1,…, m), where the resonance 
frequency and its characteristics are calculated.

– Calculation of dispersions in the vicinity of 
the principal resonance for comparison with 
reference values in excess of critical values 
repairmen team is sent, specifying the defects by 
local methods of diagnosis and carrying out the 
necessary works.

Other specialists may offer additional scenarios 
and supplement the proposed scheme.
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