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ABSTRACT
The article describes application of models of information 

probabilistic situations for solving problems of traffic control on 
the railway. The content of situational control is revealed. The 
difference between a visual and a «blind» situation during vehicle’s 
movement is shown.

The information situation around a moving object can be 
deterministic and stochastic. The concept of a stochastic 
information control situation is introduced. The choice of 
alternatives in stochastic control situations is characterized by 
organizational, technological, and informational uncertainties. 
This motivates development of control methods and algorithms 
that consider uncertainty and multicriteria in control of moving 
objects in such situations. Situational control can be used in 
automated, cyber- physical and intelligent control.

The article proposes a model for controlling mobile objects 
based on a probabilistic approach in a stochastic situation and on 
the consideration of a number of stochastic factors. The model is 

based on calculating the probability of existence of an obstacle in 
the path of a vehicle. Such a model can be used under the 
conditions of poor visibility and a probability of receiving erroneous 
information from sensors. The article gives a systematics of the 
probabilistic characteristics of a stochastic information situation 
accompanying a moving object. The application of dichotomous 
and oppositional analysis in studying obstacles on the route has 
been substantiated. The model for detecting a foreign object on 
a traffic route is based on the assumption of the presence of 
reliable and erroneous information. The analysis is based on 
Dempster–Schafer theory. The stochastic information situation 
model uses the probabilistic characteristics of the presence of an 
obstacle on the track. The probability of an object’s existence is 
estimated using Bayes’ theorem. The proposed model considers 
three factors of the stochastic situation: informational uncertainty 
in the signal; false signals, sensor measurement error. The field 
of application of this situational model comprises digital railway, 
intelligent transport systems, transport cyber- physical systems.
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Background.
Situational management in the field of 

artificial intelligence is based on the use of 
semiotic models . Situational management and 
situation analysis in the field of information 
management and practical  transport 
management technologies are based on the use 
of models of information situations [1; 2] . The 
information situation in the field of transport 
describes the factors that influence the nature of 
movement, including the appearance of other 
objects . The information situation around a 
moving object can be deterministic and 
stochastic . Accordingly, the models of the 
information situation can be deterministic and 
stochastic . Transport management can be 
analytical and stereotyped . Analytical control is 
based on the analysis of parameters of the state 
of an object and of parameters of the situation . 
Based on the analysis of all parameters, a 
solution is developed . Stereotypical control is 
associated with the analysis of known 
stereotypical situations for which the control 
decision is known as a possible alternative .

The deterministic situation is characterized 
by the presence of  cause-and-effect 
relationships . The stochastic situation is 
characterized by the presence of uncertainty . 
The choice of alternatives in stochastic 
situations is characterized by organizational, 
technological, and informational uncertainties . 
This leads to development of methods and 
control algorithms that consider uncertainty 
and multi- criteria in decision- making .

Regarding organizational management and 
automated control, it is appropriate to talk 
about management methods . Regarding 
transport cyber- physical control [3], it is 
appropriate to speak, first, about algorithms 
and, secondly, about control methods . 
Regarding intelligent control [4], it is necessary 
to talk about rules, algorithms, and control 
methods . Information situation [5; 6] is a 
model that combines the agent of control 
(solver), the controlled object (vehicle) and the 
environment of the controlled object that 
affects its state .

Situational control is a link connecting 
automated, cyber- physical and intelligent 
control . This article presents algorithms for 
calculating the probability of existence 
(identification) of an obstacle (object), which 
are used in organizing control of a vehicle 
without a person but using «technical vision» . 

An algorithm for calculating the probability of 
existence at the level of sensors is presented . 
The mechanism of merging the probabilities of 
existence from several sensors is shown . At the 
applied level, the probability of existence can 
be used in interpretation algorithms [7] of a 
situation to perform various functions to 
support decision- making, for example, to help 
a driver or when driving a driverless vehicle . 
This paper shows an integrated approach to 
considering various factors for modelling 
discrete transport control problems .

Information stochastic situation
A model of the information situation is 

necessarily used in an explicit or implicit form 
for unmanned vehicle control (TS) . In this 
case, information situations of different scale 
are used . Local information situation is a model 
associated with the state and immediate 
environment of a vehicle . Visual information 
situation is determined by the visibility area out 
of the vehicle . A «blind» information situation 
is determined by an area that extends beyond 
the line of sight and can affect the vehicle, and 
the probability of visual detection of an object 
in this area is close to zero . Besides, another 
information situation arises, called stochastic .

To measure the parameters of a «blind» 
information situation, special measuring 
instruments are used that allow tracking 
obstacles in the path of movement: radars, laser 
scanners, cameras, infrared cameras, ultrasonic 
sensors, unmanned aerial vehicles (UAV), and 
others . All these tools allow building a 
comprehensive system for technical monitoring 
of the situation and identification of obstacles 
in the vehicle’s path .

One of the main tasks of controlling speed 
and high-speed railway transport is to recognize 
objects that impede movement . Since obstacle 
objects are not planned and arise randomly, this 
leads to emergence of a stochastic information 
situation . Stochastic information situation is 
characterized by probabilistic and technological 
factors . The probabilistic factors are as follows:

• probabilistic characteristics of the 
presence of an obstacle on the track;

• probabilistic characteristics of the 
absence of obstacles on the track;

• probability of detecting obstacles on the 
track;

• probability of not detecting obstacles on 
the track;
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• probability of systematics of movement;
• probability of violation of systematics of 

movement .
The dichotomy and oppositionality of 

pairs of probabilistic assessments draws 
attention to themselves . This gives rise to 
application of oppositional and dichotomous 
analysis for spatial analysis . The technological 
characteristics of the stochastic information 
situation are due to errors and failures of 
monitoring means . In real conditions, data 
from sensors of TV monitoring systems 
contain uncertainty . False «echo» signals 
from sensors are possible . Of course, the 
measurement error must additionally be 
considered . All these three factors also 
characterize the information stochastic 
situation .

False positives are subject to environmental 
conditions .  A false measurement is  a 
measurement that is interpreted by sensors 
or information processing algorithms as a 
measurement of a real object of an obstacle, 
while in fact this object does not exist . The 
more often false measurements occur, the 
larger is the situation, that is, the larger is the 
observation area . In a local situation, there 
are few of them . There are few of them in the 
visible information situation . There are more 
of them in a blind informational situation .

The measurement of a real object is called 
true measurement . In real practice, sensors and 
gauges generate a lot of true and false alarms . 
False positives also occur from side objects that 
are not located on the traffic route, but nearby 
and do not interfere with movement .

When driving a driverless vehicle, it is 
necessary to filter the side objects that are 
present near the vehicle’s path: pillars, posts, 
traffic lights, fences . This is important while 
controlling high-speed transport, during its 
integral controlling [8] .

The stochastic information situation includes 
the probabilities of existence of the object and the 
probabilities of false alarms of the sensor . The 
stochastic information situation sets the 
conditions for probabilistic analysis . In particular, 
it analyzes whether the signal about an object is 
real or false . In other words, a stochastic 
information situation allows for the presence of 
uncertainty and requires its disclosure .

The presence of probabilistic characteristics 
and characteristics of uncertainty of the 
situation gives ground to speak of probabilistic 

situational control . Such control is described 
within the framework of Dempster– Schafer 
theory (DST) [9] .

Probabilistic situational control uses a 
probabilistic metric for each signal of a detected 
object . Using empirical probability of 
accidentally detecting side objects, they can be 
filtered by setting a threshold (dividing plane) 
in the parameter space .

One more feature of the stochastic 
information situation should be noted: visual 
situation and blind information situation work 
with parameters of the real space, as well as with 
probabilistic parameters . If we use multiple 
assessment of object recognition in real time, 
then this improves quality of object detection 
[10–12] . The reason for this is ergodicity of the 
spatial measurement process . The use of a 
stochastic information situation requires the 
use of proven statistical methods that have 
many implementations in software . Thus, 
ergodicity and statistical methods are pillars in 
the analysis of the stochastic information 
situation .

Estimating the probability of detecting a real 
object

The Bayesian approach is used to determine 
the probability of many random and dynamic 
processes . From the standpoint of logic, this is 
due to the fact that the basis of the syllogism 
modus ponens is the prototype of Bayes’ 
theorem . Bayes’ theorem in interpretation of 
mathematical logic is an elementary conclusion, 
which is called modus ponens [13] . Bayes’ 
theorem is:

( ) ( )
=

| ( )
|

( )

p z x p x
p x z

p z
 .  (1)

In expression (1), the x-quantity is the 
quantity to be estimated, p(x) –  preliminary 
probability of the quantity, p(x|z) –  next 
quantity to be estimated after observing the 
measurement, p(z|x) –  measurement made 
from the estimated values, and p(z) –  
normalizing factor . To simplify the expression 
p(z), it is often replaced by a normalizing factor 
η such that:
p(x|z) = ηp(z|x)p(x) .  (2)

In expression (2), the value of η guarantees 
that the result of evaluating the Bayes rules 
among the value of x and its complement is 1 .

For the probability of the existence of an 
object, the true value is x, and its complement 
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x  is the probability of the non-existence of the 

object . The actual measurement or fact fixing 
model is z . From (2) we get:
p(x|z) = ηp(z|x)p(x) = p(∃x

k
|Zk),  (3)

p( x |z) = ηp(z| x )p( x ) = p(∄x
k
|Zk) . (4)

The method of detecting objects on the path 
of movement in stochastic situations is based 
on the analysis of probabilistic parameters of 
the situation . These parameters are as follows: 
probability of occurrence, probability of an 
object being close to another, probability of 
detection, probability of detection, probability 
of disorder (noise or interference) .

The probability (persistence) of detection, p
p
 

(p-persistence) is an estimate of the probability 
of existence of an object . It was used in 
aerospace radar when IPDA and JIPDA were 
introduced [14; 15] . It was interpreted as the 
probability of stability of detecting an object 
with a field of view of 360° in the Markov 
process . With automotive sensors, the field of 
view of a single sensor is more limited . In the 
conditions of using sensors for a locomotive, 
the field of view is even more limited and 
therefore the probability of detection stability 

in this case is higher . The idea of using the 
sensor’s angle of view to simulate the probability 
of detection stability was first introduced for 
road vehicles and then for railway vehicles . This 
probability is sometimes called the probability 
of survival . The overall stability probability 
consists of a combination of the stability 
probability in polar coordinates:

( ) ( )ö ϕ= • • (, )mod
d p pp r p r p  . (5)

Pic . 1 shows an example of modelling the 
probability of detection stability for a sensor 
facing forward .

Practical data are as follows: the maximum 
distance to the object r = 200 m, and the 
maximum angle ϕ = ±50° . The range and cutoff 
angle were chosen as m

r
 = 0,4 and mϕ = 0,3, 

respectively, and α as 0,01, where (а) modelling 
by distance r is shown, (b) modelling by angle 
ϕ is shown, and (c) the combined probability 
of stability in the Cartesian coordinate system 
is visualized .

The probability of occurrence (birth) p
b
(x

k|k-1
), 

(b-birth) is introduced to predict existence . 
This probability is used to initialize the 
probability of existence of a newly discovered 

Pic. 1. Modelling the probability of stability of detection in polar coordinates of the sensor. 
The model was obtained by the authors on the basis of experimental work.
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object . The easiest way to model the likelihood 
of an object emergence is to take a reasonable 
constant value, for example, p

b
(x

k|k-1
) = 0,1 . 

This constant must be above the threshold . The 
choice of a constant probability of occurrence 
is also the most typical approach used in 
practice in combination with IPDA and general 
probabilities of related data, JPDA [14; 15] .

In [11], the knowledge about the sensor’s 
field of view and other detected objects is used 
to determine a more accurate probability of 
occurrence . The probability of occurrence is 
modelled based on the gradient such that the 
probability of stability changes in proportion 
to the higher probability of occurrence . This 
leads to the fact that high probability of 
occurrence is selected at the edges of the angle 
of view of the sensor and visibility of the 
object .

The probability of appearance of an object 
that is close to another in [12] is estimated on 
the assumption that new objects cannot be 
created in the immediate vicinity of already 
discovered objects with a high probability of 
existence . The density function of the 
hypothesis of probability (PHD –  Probability 
Hypothesis Density) [16] is used to obtain the 
probability of existence of an object in a certain 
area . The addition of this probability to all 
objects in the environment results in the spatial 
probability of any new hypothesis for 
appearance of an object . There are many 
options for modelling the probability of 
occurrence . When choosing a probability 
model, one should consider their simplicity or 
complexity . The type of sensor used also 
influences the selection . For example, the PHD 
model presented in [12] works well for sensors 
that can determine the size of an object . Other 
sensors, such as the camera, may rely more on 
a polar probability of occurrence model similar 
to the model presented in [11] .

Detection probability. The probability of 
detection, p

d
(k), (d-detection) is the probability 

of detecting a valid dimension of the object . 
The probability of detection affects the 
probability of existence . There are many ways 
to simulate this probability, and they vary 
depending on sensitivity of the sensor .

In [12], the probability of detecting with a 
laser scanner is modelled by the pitch of the 
vehicle and the z coordinate of the object being 
detected, which reduces the probability of 
detection when the measuring beams of the 

laser scanner are above or below the object 
being detected .

The probability of detecting with a camera 
by the optical sensor is also modelled in [12] 
using the camera’s angle of view, the position 
of the detected object, length, width, and 
orientation of the object .

The probability of detection can also be 
obtained directly from the classifier, for 
example, using the Adaptive Boosting machine 
learning algorithms for the camera [11] . The 
simplest solution for modelling the probability 
of detection is to choose an appropriate 
constant .

There is a general approach where the 
probability of detection is a regarded as 
combination of three values: the simulated 
probability of detection −| 1

ϵ
( )mod

d k kp x ,  the 

probability of measurement meas
dp  (z

k
) and the 

probability of signal reflection from the object 
|(

ϵ
)track

d k kp x :

( ) −= | 1 |( ) ( ( )
ϵ ϵmod meas track

d d k k d k d k kp k p x p z p x  . (6)

If the measurement was not associated with 
an object, then meas

dp  (z
k
) and |(

ϵ
)track

d k kp x  are 

simply ignored . The simulated detection 
probability −| 1

ϵ
( )mod

d k kp x  depends on the predicted 

state of measurements, and information about 
the measurements themselves is not considered . 
The idea is to simulate the fact that any location 
within the sensor’s field of view depends on the 
likelihood that the sensor can actually make a 
measurement at that location where the object 
should be . The simplest method is based on the 
assumption that the sensor can detect an object 
wherever it exists . This results in a constant 
value for −| 1

ϵ
( )mod

d k kp x  . This assumption may be 

sufficient in many cases . A model, that 
considers the sensor’s viewing angle sensitivity, 
improves this model . Other properties of the 
sensor, such as the prior spatial signal-to-noise 
ratio, can also be considered, especially for 
radar sensors . The combination of modelling, 
measuring, and identifying an object increases 
the likelihood of correct assessment .

The probability of disorder. The probability 
of disorder (noise) is often modelled as a spatial 
process based on the Poisson distribution for 
detection [11] . This is the probability that a 
false measurement occurs in a given area or 
within a given period of time . The Poisson 
distribution is used to estimate the probability 
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that m measurements are false measurements 
at time k, denoted as the set of false 
measurements ZF

k
, and is the expression:

( ) ë  
λλ −

= =;
!

m
F

C k

e
p Z m

m
,  (7)

where λ is rate parameter of the Poisson 
process .

The rate parameter, depending on 
application of the Poisson process, can be 
defined as a single occurrence of an event in 
case of a false measurement . The probability of 
events that m false measurements have occurred 
is given by the sum:

ë
λλ −

≤ = ∑
| |

(| | , )
!

F
k iZ m

F
c k

i i

e
p Z m P

m
 . (8)

To apply expression (8), it is necessary to 
estimate the number of potential false 
measurements |ZF

k
| and the level of intensity of λ . 

All the considered parameters together determine 
the probabilistic information situation, which is 
characterized by expression (8) .

When obstacles are detected, one of the 
options for analyzing objects, which are 
identified by sensors, is executed by discrete 
enumeration of the probabilities of the existence 
of an object . Three threshold levels can be 
introduced to characterize an object: the object 
confirmation threshold (τ

c
), the object non-

confirmation threshold (τ
uc

), and the object 
deletion threshold (τ

d
) .

If the probability of the existence of an 
object reaches the confirmation threshold τ

c
, 

it is counted among the confirmed ones and is 
included in the list of objects that the sensor 
accurately identifies and detects . If the 
probability of existence of an object falls below 
the non-confirmation threshold τ

uc
, the object 

is not considered a valid object, but is still stored 
in the sensor’s internal objects’ list .

For  pract ica l  purposes,  the  non-
confirmation threshold should be chosen such 
that τ

uc 
< τ

c
, that is, there is an effect of detecting 

objects ever checked over a long period of time 
if they have already reached τ

c
 sometime in their 

history . This is the ergodic factor .

If the probability of existence of an object 
drops even below, it reaches the deletion 
threshold τ

d
, and will be completely deleted 

from the list of objects detected by the sensor . 
Pic . 2 shows the relationship between the 
various thresholds of existence . Threshold 
values should be selected in such a way that the 
detection rate (true positive and false positive 
values) at the threshold values guarantees a 
certain desired level in a driving situation for a 
given vehicle .

Due to this, it is possible to define several 
confirmation thresholds, especially for vehicles 
of different speed modes . Each threshold 
corresponds to a different detection rate . As a 
result, the probability of existence sets the 
parameter of «logical reliability» of object 
detection . This logical reliability can be used 
as a driver assistance factor, for example, in an 
intelligent safety system during emergency 
braking with a delay . This is a case of reacting 
only to objects that meet the highest threshold 
values . In comparison, «soft» braking systems 
[17] such as adaptive cruise control will react 
earlier when detecting objects that meet the 
lower confirmation threshold .

In a complex analysis of confluence 
(merging) of situations, it is necessary to 
combine the probability of the existence of an 
object from several sensors into a common list 
of objects using the strategy of integration of 
sensors’ measurements with the general list .

The object model interface views the 
probability of existence as a single probability, 
usually derived from a Bayesian estimation 
algorithm or from IPDA/JIPDA algorithm [14; 
15] . However, to take advantage of the different 
sensors and handle complex situations such as 
opacity (occlusion), a single value alone is not 
enough to model the probability of existence 
at the merge level . Therefore, the probability 
of existence is modelled using DST in the merge 
module, as described below, and then converted 
back to a single value of the probability of 
existence at the output of the merge module . 

Pic. 2. Thresholds of existence for confirmation and deletion of objects. The model was obtained by the authors 
based on theoretical research and the hypothesis of such a threshold ratio. 
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The processing flow for merging the probabilities 
of existence is shown in Pic . 3 .

Situational modelling using the Dempster–
Schafer theory

Simulation and integration with DST 
theory is described in [18] for transforming 
measurements from sensor to sensor . In this 
case, the same probability analysis method is 
used . A detailed survey of Dempster–Schafer 
theory of proof (DS) and its many applications 
is given in [9] .

The DS theory defines an object recognition 
system consisting of mutually exclusive 
hypotheses or states of the system . To model 
existence, the simplest set of mutually exclusive 
hypotheses is that an object exists, ∃, or does 
not exist, ∄, such that:

Θ = {∃,∄} .  (9)
Then DST defines a set of values 2Θ, which 

is the set of all subsets of Θ, including the empty 
set Ø . To simulate existence, as defined in (9), 
this leads to expression (10):

2Θ = {ø, {∃},{∄}, {∃,∄}} .  (10)
The set of values contains all combinations 

that allow assigning confidence values not only 
for mutually exclusive hypotheses, but also for 
their combinations . This can be used to 

simulate ignorance or uncertainty in 
measurements from multiple sensors that can 
have different accuracy characteristics (optical 
cameras, radars, lidars) . Uncertainty modelling 
is acceptable for inference for traditional 
Bayesian methods . The set of values for the 
existence of an object includes the subset {∃,∄}, 
which includes confidence values with 
information about the existence of an object 
that is ambiguous . For each set of values, a 
BBA-Basic Belief Assignment is determined, 
often also called a mass function, where:
m: 2Θ → [0,1] .  (11)

The baseline value of BBA, or mass 
function, is the number of dimensions, such 
that each element of the 2 correct ones is 
considered believable . If BBA is used only for 
mutually exclusive hypotheses, then DST is 
equivalent to traditional Bayesian methods . 
The BBA assignment for a set of values should 
be adjusted so that:

( )
θ∈

=∑
:

1
A A

m A  . (12)

In addition, DST defines the function of 
belief (confidence):

( )
∈

= ∑
:

( )
B B A

Bel A m B , (13)

which contains the baseline belief value (BBA) 
for all subsets of A, and that value can be 

Pic. 3. Estimation of the probability of existence from multiple sensors using Dempster–Schafer theory of proof. 
The scheme was compiled by the authors based on generalization of the above algorithm.
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interpreted as the lower bound for the probability 
of indications for A . The probability of the upper 
bound for indications within the set of values 
of A is defined as the likelihood:

( )
≠∅

=
∩
∑

:

( )
B B A

Pl A m B , (14)

where Pl(A) contains all the sets in (2) that 
support the measure of confidence in A . This 
difference between confidence and likelihood 
is the sum of uncertainty in the readings for A .

Practical usage
To detect obstacles in practice, it has 

become mandatory to use «technical» or 
«machine vision» to help the driver, especially 
in poor visibility conditions . The human eye is 
unable to detect certain objects when visibility 
is not good enough . So, in winter, when snow 
covers tracks and hides obstacles, it is important 
to determine exactly how to drive the train . 
Various algorithms and mathematical models 
come to the rescue to integrate the data that 
comes from the sensors . The data has to be 
filtered by the area of interest relative to the rail 
track, objects are associated, new objects are 
initialized, the state of existing objects is 
updated, and stochastic objects are controlled 
by modelling using DST, i .e . confirmed or 
removed from the knowledge base . Pic . 4 shows 

the information situation of poor visibility, 
which is between visible and «blind» .

According to foreign data, the probabilistic 
obstacle detection system when a train moves 
on a railway line can operate at distances up to 
2000 m at speeds up to 200 km/h, for example, 
RODS –  Rail Obstacle Detection System 1 . 
This obstacle detection system on the railway 
track detects the obstacle and transmits alarms 
to the train driver in real time .

This autonomous system (Pic . 5) addresses 
more than 80 % of weather- related obstacle 
detection challenges by quadrupling the 
operator’s visual range, thereby preventing 
costly and hazardous events, avoiding accidents 
and ensuring traffic safety .

RODS solution offers assistance to the 
driver or operator (in case of remote control) 
with full visual control using a freestanding 
roof-mounted visualization kit . For this, 
modern electro- optical sensors (in the visible 
and thermal ranges) are used (Pic . 6), with the 
possibility of merging these data . Pic . 6 shows 
object recognition based on probabilistic 
models . Such recognition is beyond the power 
of man . Recognition is based on probabilistic 
analysis and the use of a library of images .

1 [Electronic resource]: https://www .railvision .io/the-
platform/main-line-vision/ . Last accessed 12 .01 .2020 .

Pic. 4. Information situation of poor visibility requiring a probabilistic assessment. 
[Electronic resource]: https://railvision.io/main-line-solution/.
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This technology allows the operator and 
driver to receive real-time emergency alerts for 
decision making while driving, reducing costs 
associated with possible injury or loss of life .

Conclusion. The proposed model of an 
information probabilistic situation and analysis 

based on it can be used for control in automated 
and transport cyber- physical systems . In 
essence, this approach is application of 
element-by-element (operational) system 
analysis as applied to the field of probabilistic 
logic [19] . A feature of the approach described 

Pic. 5. Obstacle sensing driving support system. [Electronic resource]: https://railvision.io/main-line-solution/.

Pic. 6. Obstacle detection system based on situational probabilistic analysis. 
[Electronic resource]: https://railvision.io/main-line-solution/.
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in this work is replacement of the concept of 
«alternative» by the concept of «alternative 
information situations», which are then 
transformed into probabilistic information 
situations . An alternative information situation 
is a more structured model with a number of 
constraints that tie it to the transportation 
sector . An information transportation situation 
has a trinitarian essence: side objects, a 
controlled object, and a semantic environment 
of a controlled object .  The semantic 
environment of a spatial object and its image is 
a qualitative feature of this method . It means 
using the parameter space from the image 
library to compare with spatial images captured 
by sensors . The introduction of probabilistic 
parameters into information situation 
parameters makes it possible to apply 
Dempster–Schafer theory and automatically 
becomes an advisory expert method applicable 
in transport cyber- physical systems .
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