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ABSTRACT
The issues of development of the theory of 

transport macrosystems are considered 
regarding results obtained in the works of 
A. G. Wilson, Yu. S. Popkov, A. V. Gasnikov, 
E. V. Gasnikova and others. The transport 
macrosystem is considered a complex 
multicomponent system to which series of 
thermodynamic analogy can be applied 
(equilibrium state, information entropy as a 
function of state parameters, the presence of 
basic phenomenological schemes for filling of 
states with elements, etc.). To further develop 
the theory of development of transport 
modelling, which is the objective of the article, 
it is proposed to consider circumstances that 

reflect modern trends in development of 
transport systems: diversity of transport 
systems, dynamic nature of its functioning, 
many different elements that can obey 
different models for fill ing of states. To 
implement this task, various methods are used: 
equation of the transport process introduced 
by the author, which makes it quite easy to go 
to quasi- dynamic formulations of transport 
modelling problems, as well as a general 
formal representation of the system as a set of 
elements, which is determined based on the 
analysis of many works of domestic authors. 
The conclusion is dedicated to discussion of 
issues of further development of the theory of 
transport macrosystems in a dynamic setting.
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Background. The development of the theory 
of macroscopic systems as systems with a large 
number of stochastic elements is primarily 
related to statistical physics . Classical and 
quantum systems, consisting of a large number 
of molecules, atoms, ions, elementary particles, 
can be considered within the framework of the 
molecular- kinetic or  thermodynamic 
approaches . A feature of physical systems is the 
possibility of existence of deterministic 
macroscopic states of the system as a whole 
with stochastic behaviour of particles .

The use of the molecular kinetic analogy 
for description of transport systems was first 
proposed, apparently, in the works of Alan 
Geoffrey Wilson [1–5] . They were based on the 
idea that many regularities of physical 
macrosystems can be found in complex systems 
of various nature . In the preface to the Russian 
edition of the book [1] Yu . S . Popkov pointed 
out the systems of exchange and distribution of 
economic resources . In fact, any transport 
system at the level of a city or a region exhibits 
certain properties that allow it to consider it as 
«macroscopic» . It is worth noting that in the 
English- language scientific literature, the 
theory of macroscopic systems refers primarily 
to physical systems [6] . The Soviet and modern 
Russian interpretation of this term has two 
meanings . First interprets them in the same 
manner, as physical systems [7], and the second 
considers them as complex systems involved in 
resource transportation and allocation . It is to 
the second class of systems that the most 
famous works of Academician of RAS 
Yu . S . Popkov belong [9–13] . In foreign 
literature, the analogue of this term is the 
concept of «urban system» [8], but it does not 
cover the entire range of transport systems 
considered within the framework of the 
macroscopic approach .

One of the most significant contributions 
of A . G . Wilson to the theory of transport 
systems is the entropy approach, the meaning 
of which is to maximize the function responsible 
for the most probable (equilibrium) state of 
elements in a macroscopic system [1] . This 
function can be built on the basis of, for 
example, information entropy, and its specific 
form depends on what type of state and 
elements are present in the system, and also, 
mainly, on the way the filling of possible state 
with elements is accomplished . As a result, a 
formulation of the problem can be obtained, 

in which the equilibrium of a system consisting 
of chaotically acting elements is determined .

If we talk about transport systems, then they 
have both deterministic and chaotic (more 
precisely, undefined) behaviour of participants 
in transport processes . As it was said in above 
mentioned work [1, p . 8], «no matter how high 
the degree of centralization is, the economic 
system of exchange is so complex that there are 
always random (uncontrollable) factors» . 
However, a common property of such 
macrosystems is their ability, by analogy with 
physical ones, to transform the chaotic actions 
of elements into a certain deterministic process .

If we indicate the main results of the works 
of A . G . Wilson, then it is necessary to mention:

1) development of a large number of 
different transport models, considering splitting 
by types of travel, types of transportation and 
routes;

2) development of various models of 
interregional exchange (essentially those that 
we now call «transport and logistics systems»);

3) extension of the entropy method to 
nonequilibrium states of transport systems;

4) use of the concept of «systems with 
maximum utility» for macroscopic systems, 
etc . [1–5] .

Yu . S . Popkov’s contribution to further 
development of the theory of macrosystems is 
determined by a systematic presentation of the 
apparatus of phenomenological schemes 
(Bose–Einstein, Fermi–Dirac, Boltzmann 
statistics) in the framework of transportation 
and distribution, economic, demographic 
systems, a complete study of properties of their 
stationary states, numerical methods of solving 
equilibrium problems, generalization of the 
results to the case of dynamic behaviour of 
transport macrosystems [9–13] .

It is worth mentioning that at present there 
is a huge layer of transport problems that 
explicitly or implicitly use the main results of 
the theory of transport macrosystems . Among 
them, we should note the works [14–20], which 
we single out with the purpose to only point out 
a wide range of problems solved by the theory 
of macrosystems, but in no way we pretend to 
present a complete bibliography on this topic . 
At the same time, there is an urgency in the 
new conditions of digital transport to rethink 
the legacy of the cited works and to outline ways 
for development of transport modelling 
technologies . This is the objective of this article .
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Brief definition of the transport macrosystem
Let us consider a generalized transport 

macrosystem with continuous time t containing 
Y elements of the same type with some kind of 
behaviour from the set B(t) = {β

d
(t), β

s
(t)} . Let 

each element have a state from among ρ classes 
K

1
, …, Kρ . The classification of states is such 

that these classes do not overlap .
Let σ1, …, σρ denote the sets of states, where 

σi ϵ K
i
 . We will further assume that the sets of 

states are discrete for β
s
(t) (or continuous for 

β
d
(t)) and contain a finite number of elements 

(or infinite number, respectively) .
In this section, we restrict ourselves to the 

case of a homogeneous macrosystem, whose 
elements can take on the states of a single class 
only . For example, the class of states can mean 
«location in the transport area-zone» (source-
sink of the system elements) . This class of states 
can be used for elements with β

s
(t) behaviour 

type . Another example of the concept «class of 
state» can be «average speed of the transport 
flow wihin a haul», used for elements of the 
type «vehicle» or «transportation flow» with a 
deterministic type of behaviour β

d
(t) . This class 

corresponds to a continuous (infinite) set of 
states, deterministically related to the sets of states 
of other classes  .  Thus, systems with a 
deterministic type of behaviour within the 
framework of the adopted definition cannot be 
homogeneous since they are simultaneously 
associated with several classes of states .

So, the homogeneous system has a single set 
of states of elements σ, the subsets of which σ

1
, 

…, σ
m
 are such that their union coincides with 

σ, and the intersection of any pairs is empty .
Elements of the macrosystem can randomly 

and independently of each other fall into any 

state provided by the subsets σ
1
, …, σ

m
 . For each 

fixed subset σ
n
 for an element, there are two 

possibilities: to get into any state from σ
n
 with 

a priori probability a
n
 and not to get there with 

probability (1 –  a
n
) .

Let us consider as an example a set of 
elements of the transport macrosystem of 
automobile (urban) transport, which can be 
in appropriate states (Table 1), and that 
contains the main elements and states that can 
be supplemented depending on the content of 
the task . The formulation of a problem in 
which all the elements (and the corresponding 
sets of states) are present is hardly expedient, 
and even hardly possible in principle from the 
point of view of its solvability . A more rational 
way is formulation of special cases, which 
contain no more than 2–3 elements . For 
example, it is possible to consider solving the 
problem of loading routes with vehicles taking 
into account occupancy . Then in the 
formulation of the problem we will use 
elements 2, 5, 7 and the corresponding 
possible states {d, e, f}.

The theory of macrosystems has the main 
stages of construction, which we indicate in 
accordance with the work of Yu . S . Popkov 
[8]:

1) terms and concepts, a phenomenological 
scheme are introduced;

2) the basic concept of «macrostate 
probabil i ty» is  introduced as a value 

• •=1P(N) = П P (N ),m
n n n that  i s  expressed 

through the probabilities of states of individual 
elements n = 1, …, m;

3) to determine the function P(N), the 
mechanism of filling of states in σ

n
 is 

considered, depending on the type of states 

Table 1
Elements and states of a transport macrosystem (examples) (compiled by the author)

No . Elements States

1 Vehicle a . Element i is in the transport area j;

b . Element i is in the transport area j and the zone of the 
transport area k;

c . Element i is on the haul j of the street-road network;

d . Element i is in the vehicle j;

e . Element i is on the route j;

f . Element i is at the stop point j etc .

2 Route vehicle

3 Non-route vehicle

4 Vehicle driver

5 Passenger

6 Pedestrian

7 Route

Note: Some states are impossible for certain elements .
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(Fermi, Einstein, or Boltzmann states), and 
on this basis, the function P(N) is determined, 
and then the physical and information entropy 
are determined;

4) the obtained probabilistic characteristics 
allow one to take into account the peculiarities 
of the phenomenological scheme of a 
homogeneous isolated macrosystem, which 
consist in the unequally probable choice of the 
corresponding states by the elements of the 

system in subsets σ ∈(n 1, ); n m

5) it is concluded that the generalized 
entropy for a macrosystem has a single 
maximum, the «sharpness» of which increases 
with the number of elements in the system;

6) distribution of elements of a homogeneous 
system by subsets of close states is established, 
which can be associated, for example, with 
consumption of various resources, presence and 
operation of «price functions» of the transport 
network, etc ., that is, specific problems 
associated most often with determination of the 
equilibrium of the macrosystem are solved . An 
example of such a problem is a classical 
formulation of the problem of traffic load on the 
street-road network [20], which uses the entropy 
approach when taking into account distribution 
of the travel distance [1] .

Among the main shortcomings of the 
traditional theory, one should point out 
practically insufficient attention to the 
nonequilibrium states of systems, while 
consideration of transport processes is 
accomplished in dynamics .

Quasi-dynamic model of a transport 
macrosystem

It is worth noting that an increase in 
accuracy of transport modelling can be 
achieved through the complex use of various 
measures aimed at reducing influence of the 
factor of «hardly measured» parameters of the 
state of the transport system:

1) use of methods for constructing high-
quality correspondence matrices;

2) use of data stored in the databases of 
intelligent transport systems;

3) development of a theoretical apparatus 
for solving problems of the theory of transport 
macrosystems in a nonequilibrium and/or 
dynamic formulation;

4) the use of new splitting problems, 
which would develop more broadly the 

concept of splitting by type of travel, modes 
of  t ransportat ion,  etc  . ,  proposed by 
A . G . Wilson .

To  i m p l e m e n t  t h i s  d i r e c t i o n  o f 
development, a new description of the 
«transport system» model is required . In [21], 
based on a detailed analysis of the structure of 
the term «transport system», an approach is 
proposed that makes it possible to describe 
transport and transport- logistics systems based 
on the transportation process equation, taking 
into account intensity of an arbitrary number 
of operations of any number of vehicles 
included in the structure of the transportation 
process . Such opportunities for obtaining 
information are created by modern technology 
(IoT, Big Data) .

Let us present a description of a transport 
system model that generalizes the results 
obtained in [21] and provides a basis for its use 
in a wide range of transport modelling 
problems .

The transport system is described as a set 
of elements:

a) logical and spatial connection between 
sources and flows of transport (in a broader 
description as a resource of some kind);

b) temporal characteristics of the links 
(start time and duration of each link);

c) appropriate carrying (transit) capacity;
d) transportation process plan;
e) criteria for effectiveness of functioning 

of systems (or presence of an objective) .
In accordance with this definition, it is 

possible to draw up a generalized structure of 
a model of an arbitrary transport system, 
which should include equations that 
determine:

1) road network graph;
2) a matrix of connections as logical 

(Boolean) functions of time;
3) carrying capacity of the system (as an 

alternative description, equations for the 
traffic flow transit capacity of road and street 
systems or equations for the flow rates can be 
specified here);

4) degree of fulfillment of the transport 
task (equations of transportztion processes);

5) performance criteria or equilibrium 
conditions .

The number of vehicles and the number of 
routes are included in the model as parameters . 
Then the model of the generalized transport 
system can be written as:
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Here:
t is time that is continuous in the model with 

discrete (highlighted) moments selected for 
calculating or determining the state of the 
system;

τ
0
 is start time for the system monitoring;

∆τ is duration of the transport system work 
(duration of existence, modelling, etc .);

∆τ
k
 are intervals between points of 

calculation (consideration) of the system;
k is time interval index;
ρ = ρ(t) is matrix of dimension i•j of 

transport links;
q

ij
 is transportation flow (flow intensity; 

transit capacity of a network element; carrying 
capacity of a flow of vehicles);

i, j are indices of nodes of the transport 
network, between which the value of q

ij
 is 

measured;
πυ = πυ(t) is equation of the transportation 

process, expressing the share (degree) of 
completion of the trip (transportation);

υ is vehicle index .
Let us note that system (1) does not 

explicitly have a correspondence matrix, either 
a set of routes, etc . Instead, the matrix ρ = ρ(t) 
can be used in conjunction with the flows q

ij
 . 

Efficiency criteria, equilibrium and optimi-
zation conditions, or other extreme conditions 
are not yet included in system (1), we will do it 
later .

Model (1) should, for each specific case, 
acquire a complete form that allows one to 
make calculations or solve an optimization 
problem . Therefore, for the selected system, 
these equations are supplemented with auxiliary 
conditions (distribution functions; balance 
equations; variational equalities, etc .) . One of 
the options is to formulate system (1) in a quasi- 
dynamic setting and considering information 
about consumption of resources during the 
execution of transportation processes .

For linear consumption of resources:

= = ∈∑
,

,

( ) , 1,
ij ij

m n

pq q p pq
i j

G x t x g q r ,  (2)

where r is the number of types of resources;
g

pq
 is stock of resource of q-th type;

t
qij

 is parameter of consumption function;
ρ is route index;
q is index of resource type .
For non-linear consumption of resources 

the corresponding expression looks as follows:

( )φ= =
11

( ) , . . ., , . . .,
ij mnpq pq p p p pqG x x x x g  .  (3)

Then the equations (1) can be written in a 
more general form depending on time (in the 
case of a single type of resource):
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Let us show the connection between 
G

p
(x, t) and πυ 

=
 
πυ(t) . Let us introduce a vector 

V(t) = (V
1
, …, V

a
, …, V

p
), which groups all 

vehicles by routes: V = ∈∑ ( )  .a av t v p For each 

vehicle there is an individual resource 
consumption function that depends on the value 
of the transportation process function . For 
simplicity, we will assume that all vehicles are 
homogeneous in type, and then we can assume 
that there is the one and the same function for 
all vehicles that depends on πυ . Obviously, each 
component of the vector V can be associated 
with the value of the current resource 

consumption G x,t V tπ→ ⊗( ) ( ) .p p  Here tπ ( )p  

is a vector of a share of a fulfilled transportation 
process, averaged for all vehicles on each route . 
The measure of compliance is the specific value 
of the individual resource consumption: 
G x,t g tπ= ⊗ ⊗( ) ( ) .p vp pV  Let us note that the 

components of the vector gυp
 depend on the 

route . The constraints g
p
 determine limit values 

for resource consumption that can be reached 

(1а)

• WORLD OF TRANSPORT AND TRANSPORTATION, Vol. 18, Iss. 2, pp. 6–20 (2020)

Agureev, Igor E. Development of the Theory of Macrosystems as a Necessary Condition for Improving 
Quality of Transport Modelling



19

on routes during a cycle of the transport system 
operation . Of course, other ways of determining 
G

p
(x, t) through the functions of the transportation 

process can be chosen . This may be a particular 
topic for consideration .

Then (1а) will be written in a final form:

{ }
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  (1b)

Obviously, formula (1b) is more general 
than (1a), since detailed information about 
transportation processes always allows us to 
determine the function of resource consump-
tion . The converse is not always possible to 
perform unambiguously . The procedure for 
maximizing entropy is written here as an 
extreme condition, which depends on the 
specific type of states (phenomenological 
scheme of the macrosystem) adopted in the 
system . The Boltzmann distribution is usually 
used as an assumption, which, of course, 
requires a separate discussion in each case (see, 
for example [8, p . 77]) . Of course, the extreme 
condition can be written in a different form, 
which does not limit the generality (1b) .

Thus, the present formulation asserts the 
existence of a sequence of equilibrium states of 
a transport system (with Fermi; Einstein or 
Boltzmann states), defined on a generalized 

graph ( )= Г Г t and having transit or carrying 

capacity q
ij 
=

 
q

ij
(t), resources that are consumed 

in accordance with πυ 
=

 
πυ(t), which determine 

the functions G
p
(x, t), and which are generally 

nonlinear . This formulation corresponds to the 
quasi- dynamic description of the system .

Conclusion. Generalization of models of 
type (1) can be developed towards dynamic 
theory of transport macrosystems, when the 
nonequilibrium dynamics of transport systems 

will be taken into account . It is worth noting 
that very often the hypothesis of equilibrium of 
transportation processes can be questioned . For 
example, during peak hours or during traffic 
incidents, non-equilibrium structures appear 
in the flow, which lead to significant differences 
between the results of modelling using predictive 
or optimization models and the real picture of 
distribution of flows .

The dynamic theory can be built based on 
the following basic provisions .

1) For the transport system model, the 
phase space «generalized coordinates –  
generalized impulses» is introduced . The 
dimension of the space depends on the 
conditions of specific problems . It is assumed 
that in the phase space there is a function of 
distribution of elements by «coordinates» and 
«impulses», which depends on time .

2) The existence of a generalized kinetic 
equation (equations of Boltzmann type) is 
established if validity of the thermodynamic 
approach is postulated for the macrosystem 
under consideration (the possibility of 
describing the macroscopic state of a system by 
several parameters consisting of many 
elements) .

3) It is assumed that the macrosystem 
defined in this way passes through time 
evolution, which can be characterized by a 
change in the degree of chaos with the help of 
entropy of a nonequilibrium process . Entropy 
is expressed through the distribution function 
introduced above .

4) Changing the degree of chaos in the 
system is one of the basic concepts of the 
dynamic theory of transport systems, which is 
explicitly absent in the traditional theory of 
macrosystems . For externally closed systems, 
an analogue of the Boltzmann H-theorem is 
established, which states that during time 
evolution to an equilibrium state, entropy of 
the system increases and remains unchanged 
when it is reached .

5) For open transport macrosystems under 
conditions of continuous interaction with systems 
of a higher level, it is postulated that there is an 
analogue of the concept of «energy», possibility 
of changing the degree of chaos in the process of 
evolution and of the use of the apparatus of 
physics of open systems, in particular, of the 
S-theorem of Klimontovich [22] .

6) To consider the dynamics in macro-
systems, the concept of «active particle» is 
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introduced, and then there are possibilities of 
applying the results of the corresponding theory 
[23] . In particular, for transport systems, this 
makes it possible to more fully consider 
probabilistic features of behaviour of such 
particles, whose role can be assumed by any 
element in Table 1 .

In conclusion, we will note that the above 
model (1) was tested for a section of the street-
road network, considering daily dynamics of 
adjoining territories, as main centers for 
generating vehicles [24] .
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