УДК 656.078.81 DOI: https://doi.org/10.30932/1992-3252-2020-18-22-36

ВОПРОСЫ ТЕОРИИ

Исследование развития зарубежных железнодорожных компаний с применением патентного и библиометрического анализа

Максим ЖЕЛЕЗНОВ

Олег КАРАСЕВ

Егор ШИТОВ

Юлия ШИТОВА

Железнов Максим Максимович — Национальный исследовательский Московский государственный строительный университет (НИУ МІСУ), Москва, Россия.

Карасев Олег Йгоревич — Московский государственный университет имени М. В. Ломоносова, Москва, Россия.

Шитов Егор Александрович — Московский государственный университет имени М. В. Ломоносова, Москва, Россия.

Шитова Юлия Александровна — Московский государственный университет имени М. В. Ломоносова, Москва, Россия*.

Современный этап развития экономики сопряжён с ускоренными темпами технологического развития, что формирует у компаний в качестве базовой повестки необходимость проведения регулярного бенчмаркинга лучших практик среди конкурентов. Однако, учитывая условия высококонкурентной среды, традиционные инструменты и метрики не позволяют выявлять перспективные направления инновационного развития, реализация которых в будущем может сформировать

новые конкурентные преимущества у компаний-аналогов. В целях выявления «ранних сигналов» – формирующихся направлений инновационного развития, перспективных технологий и решений – в мировой практике активно применяются инструменты патентного и библиометрического анализа, позволяющие оценивать текущую практику компаний как в области фундаментальных, так и прикладных исследований.

В данной статье представлены результаты исследования деятельности ведущих зарубежных железнодорожных компаний в области организации научно-технологических изысканий и приоритетных направлений инновационного развития, полученные с применением инструментов патентного и библиометрического анализа. В статье описываются динамика и структура публикаций и патентных заявок железнодорожной отрасли. Также в статье описываются различия в структуре кооперационных связей ведущих железнодорожных компаний в части организации публикационной и исследовательской деятельности.

В статье также рассмотрены структуры патентной и публикационной деятельности отдельных компаний, демонстрирующие их приоритетные направления организации научнотехнологической деятельности.

<u>Ключевые слова:</u> технологическое развитие, транспорт, структура, динамика, публикационная активность, патентная активность, кооперационные связи.

*Информация об авторах:

Железнов Максим Максимович – доктор технических наук, доцент, профессор кафедры информационных систем, технологий и автоматизации в строительстве Национального исследовательского Московского государственного строительного университета (НИУ МГСУ), Москва, Россия, М.Zheleznov@mail.ru. Карасев Олег Игоревич – кандидат экономических наук, директор центра научно-технологического прогнозирования экономического факультета Московского государственного университета имени М. В. Ломоносова, Москва, Россия, oikarasev@econ.msu.ru.

Шитов Егор Александрович – магистр по направлению «Менеджмент», ведущий специалист Центра хранения и анализа больших данных Московского государственного университета имени М. В. Ломоносова, Москва, Россия, egor.shitov29@amail.com.

Шитова Юлия Александровна – магистр по направлению «Менеджмент», ведущий специалист Центра хранения и анализа больших данных Московского государственного университета имени М. В. Ломоносова, Москва, Россия, julyaa.titova@gmail.com.

Статья поступила в редакцию 13.08.2019, актуализирована 17.01.2020, принята к публикации 27.02.2020.

For the English text of the article please see p. 30.

ровень технологического развития железнодорожных компаний является одним из ключевых факторов, определяющих эффективность операционной деятельности. В условиях сокращения технологического и инновационного циклов и ускорения процессов принятия решений качество организации научнотехнологического развития является критическим фактором с точки зрения сохранения ведущих позиций компании и её конкурентоспособности.

Одним из базовых элементов технологического развития является система сквозных научно-технологических приоритетов, определяющих вектор долгосрочного видения компании в разрезе разработки и внедрения передовых разработок и решений. При условии увеличения скорости передачи технологии с этапа разработки до момента внедрения компании вынуждены на регулярной основе проводить комплексный анализ востребованных направлений исследований и разработок. Подобная практика является распространённой среди ведущих железнодорожных компаний и позволяет им оставаться в русле технологических и инновационных трендов, оказывающих значительное влияние на развитие всей железнодорожной отрасли.

В целях выявления значимых направлений технологического развития могут использоваться различные методы, включая библиометрический и патентный анализ, позволяющие, в том числе определить зарождающиеся направления, потенциально обладающие критическим значением для развития всей отрасли - «ранние сигналы». Например, анализ патентной информации обеспечивает возможность многоаспектного анализа групп перспективных технологий, инновационных продуктов и услуг по целому ряду оснований, в том числе сведений правового характера [1]. Одними из ключевых целей проведения патентного и библиометрического анализа являются:

- определение масштабов, динамики и направлений научно-технологического развития как отрасли в целом, так и отдельных компаний;
- определение лидеров в области фундаментальных и прикладных исследований;

- выявление организационных и кооперационных связей отраслевых компаний с научно-исследовательскими организациями, университетами и прочими коммерческими партнёрами;
- выявление отдельных авторов, сотрудников и учёных, характеризующихся значительным вкладом в развитие отрасли по отдельным направлениям научнотехнологического развития;
- выявление «ранних сигналов» и потенциально значимых технологических разработок [2].

Согласно концепции уровней готовности технологии (далее — УГТ), фундаментальные и прикладные исследования соответствуют ранним стадиям развития технологии: УГТ1—УГТ3 [3]. Анализ научнотехнологической деятельности компаний в разрезе указанных УГТ позволяет выявлять неявные технологические тренды. Преимуществом библиометрического и патентного анализа является возможность исследования неявных направлений научно-технологического развития, не отражаемых в открытых источниках и публикуемых документах корпоративного стратегического планирования [4].

Компании, обладающие широким портфелем публикаций и патентов, традиционно обладают собственным развитым научно-техническим блоком. Одним из индикаторов активности и эффективности его функционирования служит динамика публикационной и патентной активности. Лидерами железнодорожной отрасли в области публикационной активности являются представители Азиатско-Тихоокеанского региона: China Railways (Китай), Korail (Южная Корея) и JR Group (Япония) (рис. 1). В аспекте отдельных лет в течение периода 2010—2019 гг. высокой публикационной активностью также характеризуется французская железнодорожная компания SNCF.

Публикационная активность большинства железнодорожных компаний характеризуется устойчивой положительной динамикой, которая экстраполируется в целом на ситуацию в железнодорожной отрасли. Значительное преобладание азиатских железнодорожных компаний также наблюдается и в области защиты результатов интеллектуальной деятельности (патентной активности).

Рис. 1. Динамика публикационной активности ведущих зарубежных железнодорожных компаний в течение периода 2010–2019 гг., публикаций в год. Источник: Библиографическая и реферативная база данных Scopus. [Электронный ресурс]: https://www.scopus.com/home.uri. Доступ 25.02.2020.

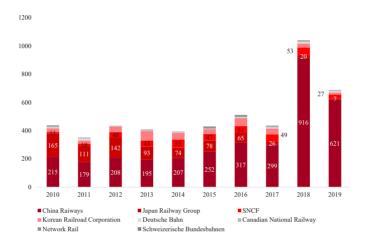


Рис. 2. Динамика патентной активности ведущих зарубежных железнодорожных компаний в течение периода 2010–2019 гг., патентов в год. Источник: Система поиска по международным и национальным патентным фондам PatentScope Всемирной Организации Интеллектуальной Собственности // PatentScope. [Электронный ресурс]: https://patentscope.wipo.int/search/ru/search.jsf. Доступ 29.07.2019.

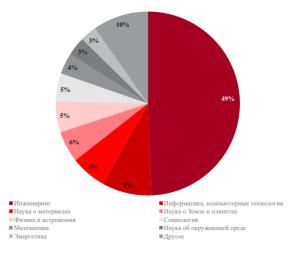


Рис. 3. Структура публикаций ряда ведущих зарубежных железнодорожных компаний с 2010 г., %. Источник: Библиографическая и реферативная база данных Scopus. [Электронный ресурс]: https://www.scopus.com/home.uri. Доступ 15.12.2019.

Рис. 4. Структура публикационной активности компании SNCF с 2010 г., %. Источник: библиографическая и реферативная база данных Scopus. [Электронный ресурс]: https://www.scopus.com/home.uri. Доступ 18.12.2019.

Анализ патентной активности может использоваться в целях определения ключевых индикаторов технологических изменений [4]. Анализ патентной активности позволяет выявить как различные научнотехнологические достижения, так существующие и зарождающиеся направления технологического развития компаний.

В течение периода 2010—2019 гг. железнодорожными компаниями с высоким

уровнем патентной активности были JR Group (Япония), SNCF (Франция) и Korail (Южная Корея) (рис. 2).

Патентный анализ позволяет сформировать понимание R&D активности компаний в аспекте технологических направлений и решений, которые непосредственно не видны внешнему наблюдателю [5]. Библиометрический и патентный анализы позволяют выявить актуальные и востре-

Таблица 1 Наиболее цитируемые статьи SNCF за 2016—2019 гг.

№	Название статьи	Направление	Год пуб- ликации	Количество цитирований
1	Потенциал вспомогательных технологических услуг транспортного средства по отношению к сети с учётом неопределённости в доступности подключаемого электромобиля и ограничений обслуживания/локализации в распределительных сетях	Электромобили/ Зарядные устройства (аккумуляторы)/Умные зарядные устройства	2016	31
2	Статистическая оценка усталостной прочности двухсрезных заклёпочных соединений и скорости роста трещин материалов старых мостов	Усталость материалов/ Модели/ S-N кривые	2017	27
3	Влияние содержания включений на модуль упругости и коэффициент демпфирования неуплотнённых материалов железнодорожного полотна	Железные дороги/Почвы	2017	22
4	Влияние содержания воды и мелких фракций на модуль упругости межслойного грунта основания железнодорожного полотна	Железные дороги/Почвы	2016	19
5	Исследование механического поведения материалов пути с различным содержанием крупнозернистых фракций	Строительство и строи- тельные материалы	2018	16

Источник: Библиографическая и реферативная база данных Scopus. [Электронный ресурс]: https://www.scopus.com/home.uri. Доступ 25.02.2020.

Рис. 5. Структура зарегистрированных патентов ряда ведущих зарубежных железнодорожных компаний с 2010 г., %. Источник: Официальный сайт патентной базы данных Всемирной организации интеллектуальной собственности // PatentScope. [Электронный ресурс]: https://patentscope.wipo.int/search/ru/search.jsf. Доступ 27.07.2019.

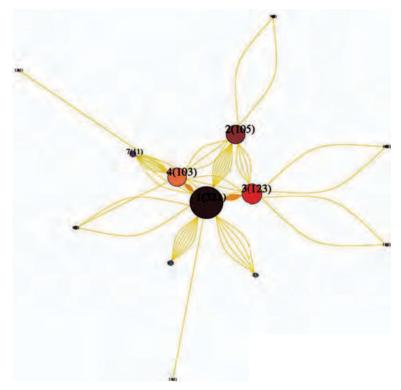
бованные технологические тенденции, а также предоставляет возможность предположить будущий вектор развития критических технологий и решений в отрасли.

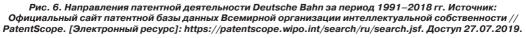
Рассмотрение и анализ структуры публикаций и патентов на основе принципов классификации позволяет выделить отдельные области, пользующиеся у компаний повышенным вниманием. На рис. 3 представлена структура публикационной активности ряда ведущих железнодорожных компаний в разрезе направлений исследований за период 2010—2019 гг.

Наиболее востребованной областью публикаций ведущих зарубежных железнодорожных компаний являются технические науки, что в целом является характерным для анализируемой отрасли. Также в структуре публикаций широко распространены исследования, касающиеся информатики и компьютерных технологий, науки о материалах, науки о Земле и планетах, физики и астрономии.

При приближённом рассмотрении структуры публикационной активности французской железнодорожной компании SNCF можно сделать вывод о высокой степени соответствия её научно-техноло-

гических приоритетов с общеотраслевой спецификой (рис. 4).


Большая часть публикаций SNCF коррелирует с исследованиями в области инжиниринга, информатики и компьютерных технологий, науки об окружающей среде, а также физики и астрономии. Указанные тематические области образуют собой около 66 % от всех публикаций французской железнодорожной компании.


Среди наиболее цитируемых статей SNCF за последние годы чаще всего встречаются работы, исследующие материалы и почву (табл. 1).

Наиболее востребованные тематические области зарегистрированных патентов, имеющие отношение к железнодорожной отрасли, в значительной степени коррелируют с направлениями публикаций ведущих железнодорожных компаний. Подобный факт позволяет сделать предположение об относительно устойчивых связях фундаментальных и прикладных исследований в железнодорожной отрасли. В частности, это подтверждается возрастающей тенденцией к принятию инициатив, направленных на полное сопровождение технологических разра-

Международная патентная классификация (МПК) наиболее востребованных патентов железнодорожной отрасли

МПК	Расшифровка	
B61L	Организация и управление движением на железных дорогах; средства техники безопасности на железнодорожном транспорте	
E01B	Верхнее строение пути; способы и устройства для укладки и ремонта рельсовых путей всех типов	
B61D	Железнодорожные вагоны, платформы и т.п.; конструктивные элементы кузовов подвижного состава	
B60L	Электрооборудование транспортных средств с электротягой; магнитные подвески или левитационные устройства для транспортных средств; электродинамические тормозные системы для транспортных средств вообще	
B61F	Подвески, рамы, поворотные тележки вагонов, устройства колёсных осей; транспортные средства для передвижения по дорогам с различной шириной колеи; устройства для предотвращения схода с рельсов; предохранительные устройства, улавливающие или удаляющие препятствия с пути и т.п.	
B60M	Линии энергоснабжения и устройства, расположенные вдоль железнодорожного полотна, для транспортных средств с электротягой	
E02D	Основания и фундаменты; котлованы; насыпи; подземные и подводные сооружения	
E21D	Шахтные стволы; туннели; выработки; подземные камеры большого объёма	
G01B	Измерение длины, толщины или подобных линейных размеров; измерение углов; измерение площадей; измерение неровностей поверхностей или контуров	
E01D	Мосты	
B61K	Вспомогательное железнодорожное оборудование	
G06Q	Системы обработки данных или способы, специально предназначенные для административных, коммерческих, финансовых, управленческих, надзорных или прогностических целей; системы или способы, специально предназначенные для административных, коммерческих, финансовых, управленческих, надзорных или прогностических целей, не предусмотренные в других подклассах	

Расшифровка тематических областей патентов к рис. 6

Вершина	Значение	
1	Железнодорожный путь	
2	Проектирование дорог, железнодорожных путей и мостов	
3	Измерение и тестирование	
4	Транспортные средства в целом	
5	Сигнализация	
6	Наземные нерельсовые транспортные средства	
7	Упаковка, транспортировка и хранение хрупких материалов	
8	Подъёмные и тяговые механизмы	
9	Ручные и переносные инструменты и манипуляторы	
10	Строительство	
11	Отопление, вентиляция	
12	Авиация и космонавтика	
13	Замки, ключи, оконная или дверная фурнитура, сейфы	

Источник: Официальный сайт патентной базы данных Всемирной Организации интеллектуальной Собственности // PatentScope. [Электронный ресурс]: https://patentscope.wipo.int/search/ru/search.jsf. Доступ 27.07.2019.

Рис. 7. Структура кооперационных связей и совместных публикаций в разрезе компаний, публикаций на направление. Источник: Библиографическая и реферативная база данных Scopus. [Электронный pecypc]: https://www.scopus.com/home.uri. Доступ 02.08.2019.

боток на всех этапах жизненного цикла. Не менее важным фактором, объясняющим данный вывод, является традиционная специфика железнодорожной отрасли и относительно узконаправленные тематики научно-технологического развития, прежде всего связанные с подвижным составом, обслуживанием инфраструктурных объектов и железнодорожным полотном [6].

Наиболее востребованными тематическими областями зарегистрированных патентов ряда ведущих железнодорожных компаний являются (рис. 5):

• организация и управление движением на железных дорогах; средства техники безопасности на железнодорожном транспорте;

• верхнее строение пути; способы и устройства для укладки и ремонта рельсовых путей всех типов.

Расшифровка представленных на рис. 5 тематических областей патентов железнодорожной отрасли представлена в табл. 2.

На рис. 6 представлен линейный граф патентной активности немецкой железнодорожной компании Deutsche Bahn, который позволяет определить междисциплинарные патентные связи.

Вершины графа соответствуют тематическим областям патентов, представленным в табл. 3. Рёбра графа представляют собой междисциплинарные патентные связи. Рядом с вершинами графа обозначена сила тематической области, выражае-

мая через количество патентов компаний, имеющих к ней отношение.

Согласно представленному рисунку, основными направлениями патентования являются: транспортная инфраструктура, приборы для измерений и тестирований, грузовая работа. Активное патентование происходит на стыке приведённых предметных областей, а также на стыке направлений, связанных с коммуникациями и наземными транспортными средствами (железнодорожным транспортом).

В целом в железнодорожной отрасли на протяжении всего периода публикационной активности компаний прослеживается тренд сотрудничества с университетами, национальными и международными исследовательскими центрами и лабораториями, особенно заметно такое сотрудничество в публикациях SNCF и JapanRailwayGroup (рис. 7). Более 60 % публикаций и исследований, осуществляемых ведущими железнодорожными компаниями, выпускаются совместно с образовательными и научно-исследовательскими организациями. Например, французская компания SNCF в более чем 87 % публикаций совместных фундаментальных статей и исследований сотрудничает с представителями научной среды: университетами, научно-исследовательскими институтами и лабораториями. В свою очередь немецкая Deutsche Bahn 75 % совместных научных исследований проводит с участниками рынка - различными коммерческими компаниями и организациями.

Вследствие ускорения темпов развития технологий железнодорожные компании вынуждены на регулярной основе проводить актуализацию трендов и динамики инновационной деятельности ведущих компаний-аналогов, а также лидеров смежных отраслей в целях выявления приоритетных векторов научно-технологического развития и приблизительной оценки собственных компетенций и перспектив.

Инструменты и методы библиометрических и патентных исследований, применяемые в ходе анализа публикационной и патентной активности, позволяют получить актуальные данные, иллюстрирующие уровень инновационного развития по отрасли, проследить тренды развития, выявить ранние сигналы возникновения

ноу-хау и определить приоритетные тематические направления исследований. Такой анализ особенно важен при решении задачи выявления областей новых знаний и определения стратегий научно-технического развития, постоянно стоящей в условиях современного этапа научно-технологического развития перед организациями любого уровня.

ЛИТЕРАТУРА

- 1. Ена О., Попов Н. Методология разработки патентных ландшафтов проектного офиса ФИПС // Станкоинструмент. 2019. № . 1. С. 28—35.
- 2. Гибсон Э., Дайм Т., Гарсес Э., Дабич М. Библиометрический анализ как инструмент выявления распространённых и возникающих методов технологического Форсайта // Форсайт. 2018. Т. 12. \mathbb{N} 1. С. 6—24.
- 3. Трансфер технологий. Методические указания по оценке уровня зрелости технологий // Национальный стандарт Российской Федерации: ГОСТ Р 58048-2017 (дата введения: 2018-06-01).
- 4. Григорян М. Патентный анализ: стратегическое обоснование, применение, преимущества и ограничения // Научно-методический электронный журнал «Концепт». 2015. Т. 30. С. 341—345.
- 5. Гришина С. Патентный анализ как инструмент стратегической диагностики // Научно-технические ведомости Санкт-Петербургского государственного политехнического университета. Экономические науки. 2008. С 113—115.
- 6. Железнов М. М. Формирование приоритетных направлений научных исследований на примере головной организации ОАО «РЖД» в сфере разработки, создания, испытаний и внедрения техники и технологий на железнодорожном транспорте (ОАО «ВНИИЖТ») // Бюллетень Объединённого учёного совета ОАО «РЖД». −2013. № 6. С. 2−12.

Авторы выражают признательность коллегам, принимавшим участие в исследованиях, результаты которых были использованы при подготовке данной статьи: Белошицкому Алексею Валерьевичу, магистру по направлению «Экономика», заместителю директора Центра хранения и анализа больших данных МГУ имени М. В. Ломоносова, Ракову Дмитрию Александровичу, магистру по направлению «Менеджмент», ведущему специалисту Центра хранения и анализа больших данных МГУ имени М. В. Ломоносова; Смирнову Роману Геннадьевичу, магистру по направлению «Экономика», ведущему специалисту Центра хранения и анализа больших данных МГУ имени М. В. Ломоносова; Смирновой Татьяне Викторовне, аспиранту кафедры статистики, ведущему экономисту экономического факультета МГУ имени М. В. Ломоносова; Терещенко Игорю Александровичу, магистру по направлению «Юриспруденция», ведущему специалисту Центра хранения и анализа больших данных МГУ имени М. В. Ломоносова; Тростьянскому Сергею Сергеевичу, магистру по направлению «Экономика», заместителю директора Центра хранения и анализа больших данных МГУ имени М. В. Ломоносова; Фроловой Анне Дмитриевне, бакалавру 3-го курса по направлению «Экономика», специалиста Центра хранения и анализа больших данных МГУ имени М. В. Ломоносова.

