
94
S

C
IE

N
C

E
 A

N
D

 E
N

G
IN

E
E

R
IN

G
https://doi.org/10.30932/1992-3252-2019-17-3-88-98

Modal Analysis of Circular 
Symmetrical Plates by Means of 

Generalized Finite Difference Method

Alaa El-Din Mansour, Moscow State University of Civil Engineering (National Research 
University), Theoretical & Structural Mechanics Department, Moscow, Russia*.

Alaa El-Din MANSOUR

ABSTRACT
In this paper, a simplified modal analysis 

procedure of circular plates procedures (on 
polar  domains)  through general ized 
(modernized) finite difference method 
(abbreviated next as – ​FDM) is developed.

Generally, circular plates are widely used 
for a plenty of modern civilian and industrial 
utilities, machine design and many other 
purposes. They form a spectrum of elements 
starting with trains’ bogies along with engine 
pistons, dampers and up to slabs and roofs 
over circular-shaped buildings, train stations 
and other transportation facilities.

Nowadays, FDM predominates the 
numerical solutions of partial differential 
equations (abbreviated next as – ​PDE) not less 
than the method of finite elements (abbreviated 
next as  – ​FEM). This is wide-famous 

mathematical-discretization method that is 
economic to compute and simple to code, less 
regarding to computation tools in hands and 
how powerful/less powerful they are, since it 
bases on replacing each derivative by a 
difference algebraic quotient in a classical 
formulation. In a sense, a finite difference 
formulation offers a more direct approach to 
the numerical solution of the PDE especially in 
po lar  coord inates  domain  problems 
considering curvilinear dimensions that even 
FEM does not.

The generalized approach of FDM considers 
many parameters less regarded by the 
classical one. Consequently, the use of 
classical approach negatively affects the 
accuracy of calculation (convergence to the 
exact solution values) and the tendency of 
results, the thing been healed by the 
generalized approach.
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A free vibration of a plate [2, pp. 1–8; 3, 
pp. 787–810; 4, pp. 89–110]

The undamped free flexural vibrations of 
circular plates are basically boundary value 
problems of the differential mathematical 
physics. Therefore, the solution in the case of 
freely vibrating plates can take the form of the 
following homogeneous differential equation:
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In most circular plate cases (especially those 
of symmetrical nature), the effects of the 
rotational inertial forces (P

z
*) are neglected. We 

can investigate the solution of equation (1) in 
the form:
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In that case the solution of the equation 
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nature can logically be extended so that:
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  represents the eigenvectors for 

each (n).
Generally, equation (2) represents the 

characteristic equation that describes a free-
vibrating circular plate in which each modal 
vector (λ) complies with a corresponding 
natural frequency (ω

n
).

Numerical approximation of the biharmonic 
equation by means of generalized FDM

Starting with Laplacian biharmonic 
operator, formed in polar coordinates as [1, 
p. 51; 6, pp. 23–27]:
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as per [1, p. 51; 5, pp. 119–120] for symmetrical 
thin circular plates, the previous operator can 
be simplified so that:
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A proposed numerical approximation for 
the biharmonic solution equation on each 
node on the integration domain mesh can 
be stated as per its position so that:

a) For intermediate node, approximation 
takes the form:
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Pic. 1. A sector of plate indicates calculation nodes in different positions.
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Pic. 2. A meshed plate simply supported along its 
perimeter.

That can be stenciled as (STENCILED).
b) For nodes, located near polar mesh’s 

center, the approximation would be:
( ) ( ) ( ) ( ) 1
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c) For central nodes, approximation is 
shaped as:
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d) Boundary conditions are treated as per 
classical FDM.

Estimation Procedure
• Each calculation node on the domain is 

supposed to be integrated in a way that 
corresponds its position as described in the 
previous section.

• A system of linear equations results can 
be easily tackled via matrix formation of
AX = λ•Bx,
where X = {Xi} is a vector matrix which 
elements represent the amplitudes of free 
vibration that govern the circular plate;

A = [A
i
] is a square matrix, obtained by the 

generalized finite-difference expressions of 
the biharmonic operator for out-coming 
system of equations;

B = [b
i
] is a diagonal matrix representing 

constants that take their places in the system at 
right-hand side (R.H.S.)

• Multiplying the whole algebraic equations’ 
system by the inverse matrix B‑1 , we can get 
(C – ​λ•I)x = 0; where C = B‑1•A & I represents 
the unity matrix.

• Except for the trivial solution that 
equation (C – ​λ•I)x = 0 gives, a modulus of 
the parameters set |C – ​λ•I| implies:
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from which we can generate required 
eigenvectors (modal vectors) corresponding to 
natural frequencies (ω

n
) of considered plates.

Numerical Verification
In this part, a simple verification problem 

had been accurately chosen to express how easy 
the presented technique can estimate natural 
frequencies / mode-shapes of a circular plate 
showing high accuracy compared to other 
methods applied in common engineering tasks 
for solving similar problems.

STENCILED
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Let us consider a steel circular plate 
(E = 2,04•10–6 kg/cm2, υ = 1/3) of dimensions 
(a = 500 cm, thickness = 2 cm) with a simply 
(hinge type) supported perimeter (as that in 
Pic. 2).

Here, verification consists mainly in 
evaluation of the precision of eigenvectors 
(mode shapes) & eigenvalues (natural 
frequencies) resulted from calculations 
generated through the suggested approach in 
comparison with others.

Concerning eigenvalues (natural frequencies), 
a comparison of results has been tabulated as 
follows (Table 1).

Eigenvectors (mode shapes) are readily plotted 
along a central x-section of the investigated plate with 
the aids of a Mathcad sheet as shown in Pics. 3a–e.

Conclusion
The proposed algorithm based on a 

generalization (modernization) of finite 
difference equations has been clearly verified for 
circular plates calculations.

Pic. 3a. 1st mode shape of a plate 
corresponding to ω

0
 = 1,227 Hz.

Pic. 3b. 2nd mode shape of a plate 
corresponding to ω

1
 = 1,935 Hz.

Pic. 3c. 3rd mode shape of a plate 
corresponding to ω

2
 = 3,658 Hz.

Pic. 3d. 4th mode shape of a plate 
corresponding to ω

3
 = 5,288 Hz.

Pic. 3e. 5th mode shape of a plate Corresponding to ω
4
 = 7,541 Hz.
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Referring back to the numerical verification 
section, it figured out the core advantage of the 
suggested procedure, not only limited to 
precision of the generated results and their 
convergence to exact solution, compared to the 
outcomes of the other similar methods, but also 
a possibility to include new terms that consider 
discontinuity parameters never considered by 
the classical FDM, thus allowing to analyze 
plates with more complex geometry.

Finally, it’s not hard to solve problems using 
numerical techniques especially the above 
proposed one, as it is a process of handling 
continuous R.H.S of an original differential 
equation discretized together with its 
mathematical derivatives in a system of linear 
algebraic equations. Raising the solution 
accuracy through embedding discontinuity 
parameters, speaks up about the possibility of 
using the new developed method independently/
co-phased with the method of finite elements.
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Table 2
Nomenclature

w
i, k

The value of deflection (w) at a point-node – ​of a (i) ordinate on R‑axis & 
(k) ordinate on θ-axis

ω
n

nth natural frequency of the plate

*
*(') * *

* r

d u
u U

dR
= = ∂ = ∇

A function (U)’s derivative of a power (*) on axis (R)

( )R
jW →Δ Difference in values of deflection before & after node (J) along R‑axis

( )R
jϕ → Angle of rotation between the horizontal plane & normal to the plate at 

node (J)

h, r
j 
θ

j
Mesh dimensions on axes R, θ for a node (J), respectively

( )
3

2
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12 1

Et
D

υ

 
 =
 − 

Cylindrical rigidity. «stiffness» of a circular plate

E, υ, t, a Elasticity (Young’s) modulus, Poisson’s ratio and Plate thickness, Plate 
Radius respectively

•

Table 1
Results comparison table

n Eigenvalues (ωn) in Hz

Modernized FDM Analitical Solution  
[7, pp. 233–234]

FEM

0 1,227 1,3990 0.98

1 1,932 1,7392 2.07

2 3,658 3,6176 3.31

3 5,288 5,2469 5.11

4 7,541 7,5795 7.83

Error, % 4,92 % 12,22 %
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