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ABSTRACT
The article presents additional options for 

development of the previously described 
method [3] of covertly transmitting a QR code 
using steganography, which may be required 
for delivery of information related to the 
transportation process and other tasks solved 
in transport. In particular, a new detailed option 
of application of different mathematical 
methods used in various scientific fields (for 

example, multi-grid method for difference 
approximation of the Dirichlet boundary-value 
problem for the Poisson equation with a high 
degree of accuracy) was proposed. An 
effective iterative formula was constructed for 
cases of complex sources distribution. The 
method reduces the number of iterations and 
the likelihood of an error when restoring the 
original and allows to create a respective 
application software.
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Introduction. The scope of modern scientific 
discussion comprises both issues of using a QR 
code to solve problems of transmission of 
information for transportation process 
purposes, and of methods and algorithms 
associated with the use of steganography for 
this purpose . The use of mathematical physics 
methods allows to increase strength of 
cryptographic algorithms against the attempts 
to unauthorizedly acquire information . This 
will increase safety of transportation and 
stability of transport operations .

Some important aspects of the problems in 
transportation of dangerous goods are discussed 
in [3, p . 14] . In [1, 3], the algorithm of direct 
and inverse Radon transforms is implemented 
using a specific example . The same works [1, 
3] for the first time proposed to use the 
steganography for transmission of a QR code .

The [2, 3] for the first time proposed to use a 
solution of the Dirichlet boundary value problem 
solution in Poisson equation to transmit a QR 
code . It is assumed that someone (SO) wants to 
send information to the addressee (A) encoded 
in a QR code secretly from an outside observer .

To do this, the given QR code is divided into 
the same elementary «white» and «black 
(shaded)» squares and their centers of gravity 
are calculated .

The function of two variables is assigned:

( ) ( )
( )

1, , ,
, ,

0, ,

if x y
x y

if x y
ϕ

 ∈Ω=  ∉Ω
  (1)

where Ω is a black (shaded) area (Pic . 1), which 
can be represented as a combination of a certain 
set of elementary squares . The masked image 
is a transformed QR code in which the 
transmitted information is located . The 
function (1), which has discontinuities of the 
first kind at some boundaries of the «black» 
squares, is calculated .

In [1, 3], methods of preliminary masking 
and sophistication of a message were proposed, 
for example, the method used in the theory of 
fractals, namely, «iteration by linear systems» . 
Accordingly, an intermediate iteration process 
is organized x
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, where s = 0,1… iteration number, 

and x
s
, y

s
 are the coordinates of the centers of 

gravity of elementary «black» squares that make 
up the QR code in the Cartesian coordinate 
system . The origin, the point (0,0) on Ω, the 
scale and the direction of the axes relative to the 
graph are known only to SO and are associated 
with a given QR code . The same applies to the 
given constants {e

0
, a

0
, b

0
, f

0
, c

0
,

 
d

0
} and the 

selected number of iterations s . Thus, additional 
keys appear . Note that the structure and 
geometry during each iteration change 
significantly, but there is a unique inverse 
transformation given in [3] . It is possible to 
transmit any iteration .

The first iteration shown in Pic . 1a, is 
described in [3, p . 16] . Pic . 1b shows the second 
iteration of the QR code fragment using linear 

Pic. 1a, b. Fragment of a QR code.

a) b)
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systems a
0
 = 1, b

0
 = -1, c

0
 = 1,

 
d

0
 = 1 e

0
 = 1, 

f
0
 = 2 .

The objective of this work is to further develop 
the method for transmitting information previously 
set forth in [3] using the boundary problem for the 
Poisson equation by developing an effective 
iterative formula for a complex system of distributed 
sources in the problem of steganography and by 
developing a second program on this basis .

The study used methods of applied mathematics, 
in particular, the method of the Dirichlet boundary 
value problem solution for the Poisson equation, 
the Gauss distribution, methods for solving 
differential equations and systems of linear 
algebraic equations .

Results.
1. Preliminary remarks
Remark 1. To solve the problem of hidden 

transmission of QR codes, it is proposed to biuld 
two software programs in parallel . The first 
program describes the procedure for calculating 
the solution of a boundary value problem with zero 
boundary conditions in a rectangle for the Poisson 
equation, which is suitable for a large family of QR 
codes . All keys (required constant values) are 
computed or specified . The second program 
restores the original using the image separated from 
the «stegacontainer» .

In the model version described in this work 
three objects are considered: the original «O», the 
image obtained after the integral transformation 
«I», the restored original «RO» . The restored 
original «RO» may differ from «O» by an error 

arising due to noise and to solution of the inverse 
ill-posed problem .

Remark 2. Note that in the calculations, the 
integer coordinates of the centers of gravity of 
elementary squares for formula (5) were specified 
in the second program manually .

Definition. The masking function will be called 
the function χ(x, y), which can specify the 
coordinates of «black» squares that did not exist in 
the given QR code and that supplement their set .

Let’s build the amount:
f(x, y) = φχ(x, y) + χ(x, y) .  (2)

Images on the projection plane of the graph of 
the function (2) are considered analogously to the 
example in Pic . 1 . Similarly to (1), we assume that 
at the points (х, у), belonging to the «black» 
squares, the function (2) takes the value of one, 
and the function is zero at the points (x, y) belonging 
to «white» squares . At the stage of difference 
approximation of the problem, we use the «twin» 
of the function f(x, y) in the form of a 
discontinuous function

( ) ( )
( )

1, , ,
,

0, ,

if x y
N x y

if x y

 ∈Ω=  ∉Ω
 .  (3)

We will call (3) an «indicator» function .
Its role is described below in Remark 3 .
2. The method of information transmission 

using the boundary value problem for the Poisson 
equation

We will place the graph corresponding to 
function (2) on the plane inside the contour, 
which represents a rectangle of such a minimum 

 a) b)
Pic. 2a, b. Used grid patterns. The outer rectangle corresponds to a nine-point pattern with a high order of 

approximation of the Poisson equation in a rectangle [4] and in the «base» grid (6).
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area with sides parallel to the axes of the 
Cartesian coordinate system, that all «black» 
(shaded) squares are inside it . The case when 
this rectangle turns out to be a square, is rare and 
simpler, it was briefly considered in [3, p . 19] . 
Then it is possible to do with a uniform grid with 
a constant step h . Typically, in such a formation 
a QR code generates a rectangle on a plane . If 
we use a step obtained by splitting the minimum 
side, then in order to reduce computations in 
the whole area, it is obviously necessary from 
practical point of view to introduce the second 
somewhat larger step in the direction of the long 
side of the rectangle . The sides of an elementary 
black shaded rectangle should be related as 
rational numbers, for example, 1 : 2 . By this, we 
reduce the number of calculations, but the 
«black» squares are transformed into rectangles, 

and the area occupied by the formulas increases 
by about three times .

So, in many cases, the quadrilateral contour 
of the minimum area, covering all shaded 
elementary squares, in the graphic image of the 
function f(x, y) (3) turns out to be a rectangle 
(Pic . 1) . Let’s denote the inner area by Ω

0
 . For 

certainty of b and for brief formulas, we assume 
x

max 
= a > 0, y

max 
= d > 0, x

min 
= b < 0, y

min 
= c 

< 0 .
We denote by m

1
 = │x

max 
–  x

min
│, m

2
 = 

│y
max 

–  y
min
│ the lengths of the sides of the 

contour rectangle . Let’s consider the internal 
Dirichlet boundary value problem for the 
Poisson equation with homogeneous boundary 
conditions:

2 2

2 2

( , ) ( , )
( , ),

u x y u x y
f x y

x y

∂ ∂
+ =

∂ ∂
  (4)

Pic. 3. The function of the right side of the problem (4), calculated by the formula (5) 
for the source shown in Pic. 1b. 
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а < x < b, c < y < d, u(a, y) = u(b, y) = u(x, 
c) = u(x, d) = 0 .

The entire area is divided into elementary 
«white» and «black» rectangles by the first 
«large» two-dimensional natural grid .

At the first stage of the transformation of 
the problem (4), we replace the function with 
discontinuities of the first kind (4) with a 
continuous, infinitely differentiable function, 
namely with the sum of two-dimensional 
Gaussians . Then the conditions of existence 
and uniqueness of the theorem for the solution 
of problem (3)–(5) are satisfied [4, p . 137] . 
Here we have introduced the following 
notation: V is the set of pairs of centers of 
Cartesian coordinates on the plane of «black» 
squares inside Ω, and W is the set of pairs of 
coordinates of the centers of gravity on the 
plane of all «white» and «black» squares inside 
Ω . At the second stage of the difference 
approximation of the problem (4) in the 
program we use the function:

1 2
2 2,

,
, 1 11 22

1 2 11 1

1 1 22 2 2 2 1

2 1 2

exp ,

1, , 1, , , , , ,

; , 1, ,

1, , 0, , 0,  .

m m
m n

mn

x x y x
f N

h h

m m m n N b a h m

h n d c h m h n m

m m n n n

ν δ
ν δ

ν δ η η

ν δ ν δ

ν

δ

=

    − − = − −    ⋅ ⋅    
= = ∈ − = ⋅ =

= ⋅ − = ⋅ = ⋅ =

= = =

∑

  (5)

Here (h
11

,
 
h

22
) is a coarse-grid vector; the 

steps of the coarse grid are equal to the sides of 
the large black (white) cell for specifying the 
QR code, (h

1
,

 
h

2
) is the minimum grid step 

vector for solving the Poisson equation:
x

m 
= a + mh

1
, y

n 
= c + nh

2
, m = 0,…, n

1
,

 
n = 

0,…, n
2
, xν 

= a + νh
11

, yδ 
= c + δh

22
,

ν = 1,…, m
1
, δ = 1,…, m

2
, (ν, δ) ∈ V, (x

m
, y

n
) 

∈ W .
Thus, a second, two-dimensional uniform 

«base» grid [9] (Pic . 2a) was introduced with 
steps:

1 2

1 2 1

, 1 2
2 1 11 2 22

1 1 2 2

, ,

, , 0, ,

 .
0, , ,

m n

n n

a x b c y d

x a mh y c nh m n

m mb a d c
n n h h h h

n n n n

ω

< < < <

 = + = + =
 =  − −

= = = = = 
 

  (6)

The lengths of the sides of an elementary 
«white» and «black» rectangle are in general 
considered by the program as multiples of the 
smaller steps of the «base» grid h

1
, h

2
 . The centers 

of «black» squares (rectangles in the general case) 
(хδ, уν) are determined by formula (5), and in the 
example in this paper, the coefficient responsible 
for variance in functions (5) is chosen as η = 0 .5 . 
This choice is not the single one .

Remark 3. Note that n
1
, n

2, 
m

1
, m

2
 are 

positive integers, program parameters . The 
program uses for technical purposes the 
differential approximation of the «indicator» 
function (3) Nν, σ on the grid (6):

( )
( )

2
1

1 2 , 2
2

1, ,
1, , 1, ,

0, ,

N
m m N

N
ν δ

ν δ
ν δ

ν δ

 ∈= = = 
∈

, (7)

where N
1

2 is a two-dimensional set of pairs of 
node numbers –  the centers of «black» 
rectangles . Similarly: N

2
2 is a two-dimensional 

set of pairs of nodes –  the centers of «white» 
rectangles, N

1
2U N

2
2 = W .

Function (5) defines the complex structure 
of distributed sources . The center of a Gaussian 
is a point on the plane in which the local 
maximum of the function is located, which, 
similar to the Gaussian distribution, coincides 
with the center of gravity of the «black» square .

Firstly, (5) well approximates and smooths 
the boundary of the discontinuity between the 
«white» and «black» squares (in general, 
rectangles), which has existed before . The 
«indicator» function performs the erasure of 
the «tails» of the Gauss distribution, if they «got 
in» the «white» squares (in general, rectangles) . 
Secondly, it makes it easier to check stability of 
the work of both programs (see Remark 1) not 
only in the example under consideration 
(Pic . 1), but also for any other representative 
of the family of functions (2) generated by 
another QR code .

Remark 4. There is an exact solution to the 
problem (4), (5), expressed in terms of the 
Green’s function [5, p .  126], which, 
unfortunately, is only of theoretical interest . In 
practice, it generates the sum of rapidly 
oscillating terms of a series with slowly 
decreasing coefficients, while it is necessary to 
calculate the integrals of them .

Remark 5. Based on the need to present the 
material in an understandable and simple form 
using the example of simple formulas, we skip 
a number of steps . For practical application of 
the proposed method, more complex formulas 
can be found in [9] . At the same time, we leave 
markers for the process of restoring formulas 
in the form of different steps, and write some 
simple formulas for two different steps . The 
most cumbersome formulas are given for the 
simplified case h

1,
 = h

2
 = h, whereas separate 

formulas for different steps are three times more 
voluminous and have an approximation error 
lower by 2 orders of magnitude [4], [9] .
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3. Building an effective iterative formula for 
a complex system of distributed sources in the 
problem of steganography

To test the program, let’s build an example:
2 2

2 2
2sin( ) sin(y), 0 , 0 ,

(0, ) ( , ) 0, ( ,0) ( , ) 0,

u u
x x y

x y

u y u y u x u x

π π

π π

∂ ∂
+ = + < < < <

∂ ∂
 = = = =

  (8)

with the exact solution written through 
elementary functions:

1 ( )
( , ) sin( ) ( ) 1 ( )

( )

1

� 2

( )
sin( ) ( ) ( ) 1  .

( )

ch
u x y x ch y sh y

sh

ch
y sh x ch x

sh

π
π

π
π

 − 
= − + +  

  
 − 

+ + −  
  

  (9)

In this example, the right-hand side in (8) 
is a continuously differentiable function inside 
the domain, and the solution satisfies zero 
boundary conditions .

We will compare the numerical solution of 
problem (4)–(5) proposed in this work with the 
solution (9) of problem (8) by the number of 
iterations and accuracy, if instead of the right 
part we use the well-known analytical function 
(8) and its exact solution (9) instead of the 
algorithmically specified QR code using 
formula (5), since the analytical solution for 
the right side of the Poisson equation, as shown 
in Pic . 3, is unknown .

Derived relation 1. For a continuously 
differentiable function f(x, y) in the domain Ω

0
 

from (4), we have the derived relations:

( ) ( )22 2 4 4

2 2 4 2 2 2

,
, , ,

f x yu u u u
f x y

y x y y x y

∂∂ ∂ ∂ ∂
= − = −

∂ ∂ ∂ ∂ ∂ ∂
6 4 6 6 4 6

6 4 2 4 4 2 2 2 2 4
, ,  .

u f u u f u
etc

y y x y x y x y x y

∂ ∂ ∂ ∂ ∂ ∂
= − = −

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
 (10)

Formulas (10) follow from (4) .
For a brief record, the notation is introduced:

1 2 1 2

1 2 1 2

1

1 2

2

1 1 1 1

1 1 1 1

0,0 1

, ,
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,0

,0
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h
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u
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u

u y

y

u

u

− − + −−

− + + +

− −

−

−

+ − −

−

+

= =

= =

= =

= =
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  (11)

Similarly to (11) we introduce the notation 
(12) .

Theorem 1. An effective iterative formula for 
a complex system of distributed sources in the 
problem (4)–(5) in the case h

1,
 = h

2
 = h has the 

form:

( )

( )

1 1 1 2 1
, 0,0

1
0,0 2 00

2

1 1
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2

2
2 0,0 1

6
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2

,
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20

10 40 3 3
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  (13)

The following notations are introduced:
, , , ,

2 ,0 ,0 0, 0, 0,0
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which are simplified . For example, one should 
read: f

-1,-1
 = f(x

m-1
, y

n-1
), vf

1,-1
 = f(x

m+1
, y

n-1
), 

u
0,0

 = u(x
m

, y
n
)…and so on (see Pic . 2) . Thus, 

the counting inside the pattern goes from the 
center point (x

m
, y

n
) =

 
(0,0) .

Proof. We choose a nine-point pattern with 
a high order of approximation of the Poisson 
equation in a rectangle (Pic . 2) . In [3], a 
formula was obtained approximating the sum 
of four function values at nodes with vertices 
of a rectangle not lying on the coordinate axes 
(Pic . 2a) (-h
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m n m n m n

m

Q

y f y f y f

y f

y f y f y

f f f

f

f

f

f ff

− − − + + −

+ +

− − − + + − −

−

− − − −

+

− − −

= = =

=

= = =

1/2,1 1, 1/2 1,1/2

1, 1/2 1,1/2

1 1 1/2 1 1/2

1 1/2 1 1/ 22

) (x , ) (x , )

(x , )

, , ,

, , )( , ) (x

n m n m n

m n m n

y f f y f f y f

f y f f f Zy

− − −

−

+ − − − +

+ − + +

= = =

= =  

 (12)
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We rewrite it for equal steps h

1
 = h

2
 = h, using 

the decomposition into a Taylor series for small 
values of h (Pic . 2a):

, , , , 0,0

2 2
2

2 2
6

4 4 4 4

4 2 2 4

4

2

( ) .

( 6 )
6

m

n

h h h h h h h h

x x

y y

u u u u u

u u
h

x y
O h

h u u u

x x y y

− − − −

=
=

+ + + = +

  ∂ ∂
+ +  ∂ ∂  + + ∂ ∂ ∂ + + + ∂ ∂ ∂ ∂ 

  (16)

If the vertices of the rhombus are located in 
nodes lying on the coordinate axes (-h

1,
, 0), (0

,
, 

h
2
), (0, h

1
), (h

2
, 0) (Pic . 2a), then for equal steps 

h
1
 = h

2
 = h, we get a Taylor expansion:

1 1 2 2,0 ,0 0, 0,

2 2
2

2 2

6
0,0 4 4 4

4 4

4 ( ) .

12

m

n

h h h h

x x

y y

u u u u

u u
h

x y
u O h

h u u

x y

− −

=
=

+ + + =

  ∂ ∂
+ +  ∂ ∂  = + +  ∂ ∂ + +  ∂ ∂  

  (17)

Following [4], we approximate the Laplace 
operator with a linear quadrature formula:

( )
( )

0 0,0 1 ,0 ,0 0, 0,

2

2 , , , ,

1
,

h h h h

h h h h h h h h

C u C u u u u
u

h C u u u u

− −

− − − −

 + + + +
 Δ ≈
 + + + + 

  (18)

where constants are to be defined .
Lemma 1.
For a continuously differentiable function 

f(x, y) from 2(R )C ∞ in the problem (4)–(5), the 

constants and the residual of formula (18) have 
the form С

1
 = 2/3, С

2
 = 1/6, С

0
 = -10/3, 

( ) ( )

( ) ( )

( ) ( )

2

4 44

4 4

44
6

2 2

,
12

, ,

360

,
 .

90

m n

m n m n

m n

h
R f f x y

f x y f x yh

x y

f x yh
O h

x y

= Δ +

 ∂ ∂
+ + +  ∂ ∂ 

∂
+ +

∂ ∂

  (19)

Proof will be given for a simplified case h
1
 = 

h
2
 = h .

In [4; 6, p . 23] it is proved that only the 
terms in the fourth and sixth degree of step h 
can be expressed in terms of the partial 
derivatives of the function f(x, y) at the central 
point of the pattern (Pic . 3) .

Substituting in (16) the blanks of formulas 
(14), (15) and using the derived relation (10), 
we obtain three algebraic equations C

0
 + 4C

1
 + 

4C
2
 = 0, C

1
 + 2C

2
 = 1, C

1
–4C

2
 = 0 . These are 

necessary conditions for equality to zero of the 
terms, grouped in zero and second order of 
degree of the step h . This implies C

1
 = -1 –  

C
0
/2, C

2
 = 1 + C

0
/4 .

The necessary condition for the fact that in 
bracket (19), where the summands are collected 
in the fourth order in step h, there are no partial 

derivatives of the function u(x, y) and the values 
of only the partial derivatives f(x, y) remain, is 
the equation C

0
 = -10/3 . Then C

1
 = 2/3, 

C
2
 = 1/6 .
The proof of Lemma 1 is complete .
We introduce the third smaller uniform grid 

for the difference approximation of the second 
partial derivatives of the function f(x, y) by five 
nodes along each axis . Its pattern is shown in 
Pic . 2a Additional nodes are marked with 
crosses .

We introduce a fourth, smaller uniform grid 
for the difference approximation of the fourth 
partial derivatives of the function f(x, y) by 
seven nodes along each axis . Its pattern is 
shown in Pic . 2b .

Finally, we definitively rewrite the formula 
(18), where we consider the Poisson equation 
in the problem (4)–(5):

( )

0,0 2 12

4 4 4 4 4
2

0,0 4 4 2 2

6

1 10 2 1

3 3 6

12 360 90

0 .

m

n

x x

y y

u F F
h

f h f f h f
f h

x y x y

O h

=
=

 − + + = 
 

  Δ ∂ ∂ ∂
= + + + + +   ∂ ∂ ∂ ∂  

+ =

  (20)

Here the notation is defined in (11)–(15) . 
The residual (19) is added to the right-hand 
side of (20), which gives an amendment to the 
solution, and we will take it into account using 
iterative numerical methods .

Expressing from (20) the central nodal value 
u

0,0
, we build a blank of the explicit formula for 

a simple iteration method:

( )

2
1 2 1

0,0 0,0

2

4
2 6

4 4 44

2 24

4

3

5 20 10

( , )
(

40

( , )
 .

( , )
)

1200 300( , )

m

n

k k
к k

k

x x

y y

F F h
u f

f x y
h

f x y
h O h

h h f x yx

x yf x y

y

+

=
=

= + − −

 
Δ + 

 
 ∂ +− +  ∂∂ + + 
  ∂ ∂∂ +  ∂  

 

  (21)

Here k is the iteration number . In the right 
part, all terms are calculated at the k-th step of 
the iteration process . When k = 0, the initial 
value is selected as a smooth, continuously 
differentiable function . The formulas for 
calculating the right-hand side of (21) are 
derived below .

Since the right side of the Poisson equation 
in the problem of steganography is given 
numerically in the form of (5), we will use 
difference operators for the partial derivatives 
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in (21) from [6, p . 22; 7, p . 33] . We use for this 
the third and fourth grids with fractional steps 
for the patterns described above .

For further proving Theorem 1, we need 
three more auxiliary statements .

Lemma 2. The Laplace operator with O(h4) 
accuracy in the form of a quadrature formula 
in the case h

1
 = h

2
 = h can be represented as:

( )41 2
0,0

(x ,y )

16
20

3 3

m nf

K K
f O h

Δ ≈

 ≈ − + − + 
 

,  (22)

where K
1
, K

2
, f

0,0
 are defined in (11), (15) .

Proof. The linear Laplace operator is 
symmetric with respect to variables x, y:

2 2

2 2

( , ) ( , )f x y f x y
f

x y

∂ ∂
Δ = +

∂ ∂
 .  (23)

Then it is sufficient to approximate the 
second derivative with the specified accuracy .

Remark 6 . Now we consider, temporarily 
(to derive a formula and to show that these 
arguments will be generalized for a function of 
two variables f(x, y)) a continuosly differentiable 
function of one variable with the same identifier 
f(x) . We choose an additional (temporary, for 
derivation of the formula) local coordinate 
system in the pattern with zero at the point 
x

m
, y

n
 .

A formula is known for three equidistant 
nodes f

xx 
= (f(-h) + f(h) –  2f(0))/h2 = (f

-1
 + 

f
1
–2 f

0
)/h2 + O(h2), which has an accuracy of 

O(h2) [6, p . 22; 7, p . 33] on the x-axis (Pic . 2a) . 
We choose five equidistant nodes within the 
segment [-h, h], symmetrically located relative 
to the grid origin:

( )

( ) ( )( )

0 1''
2

2

0 0 1 1/2 1/2 2 1 12

(0) ( ) ( )1 2 2(0)

( ) ( )

1
 .

xx

h h
B f B f f

f
h

B f h f h

B f B f f B f f
h − −

  + − + +  ≈ ≡  
 + − + 

+ + + +

  (24)

Here it is necessary to define constants .
Using the method of indefinite coefficients, 

we select weight coefficients in the formula (24) 
so that it has the maximum algebraic order of 
error, following [8, p . 40] .

Remark 7. We assume that in a small 
neighborhood of zero the function f(x) behaves 
like a power function . We write the function, 
calculate the derivative and construct algebraic 
equations using formula (24):

1) ( ) ( )( )
''

0 1 2

0 1 2

џџџџ

1 1 1 1 0;

2 2 0;

xxf x f

B B B

B B B

≡ =

+ + + + =

+ + =

2) ( )

''

0 1 2

( ) ; (0) 0;

0 0;
2 2

0 0;

xxf x x f

h h
B B B h h

= =

  + − + + − + =  
  

≡

3) ( ) ( )( )

2

2 2
2 22

0 1 2

1
2

( ) ; (0) 2,

0 0;
2 2

2
2 2;

4

xxf x x f

h h
B B B h h

B
B

= =

    + − + + − + =         

+ =

4) 

( ) ( )( )

3 ''

0

3 3
3

0 1

3 3

2

џџџџ

0
2 2

0; 0 0;

xx x
f x x f x

h h
B B

B h h

=
= = =

    + − + +         

+ − + = ≡

5) ( )( )

4 2

0

4 4
44 4

0 1 2

1
2

( ) ; (0) 12 0;

0 0;
2 2

2
2 0;

16

xx x
f x x f x

h h
B B B h h

B
B

=
= = =

      + − + + − + =           

+ =

6) 5 3

0
( ) ; (0) 20 0; 0 0 .xx x

f x x f x
=

= = = ≡

We obtain SLAE (a system of linear algebraic 
equations) and its solution:

B
0
 + 2b

1
 + 2b

2
 = 0; B

1
 + 4B

2
 = 4; B

1
 + 

16B
2
 = 0; B

0
 = -10; B

1
 = 16/3; B

2
 = -1/3 .

Let us substitute the results of the 
calculations in (24) and obtain the rule by 
which the second-order finite-difference 
operator A acts on a function of the variable x:

( )

( )
( )

0

0 1/2 1/2
4

2

1 1

(0)

16
10

1 3  .
1

3

xx x
f A f

f f f
O h

h
f f

=

−

−

≈ =

 − + + − 
 = +
 − + 
 



  (25)

In formulating the formula (25), considering 
symmetry, six conditions were used regarding 
coefficients, exact for power polynomials of 
one variable: 1, x, x2, x3, x4, x5 . The left and right 
parts of the formula (23), the second derivative 
and quadrature formula (linear with respect to 
the nodal values of f

i
) and fixed weight 

coefficients B
i
 are linear functionals . Then their 

d i f ference,  equal  to  the  res idual  of 
approximation of the formula (23), is also a 
linear functional . Therefore, if the residual of 
formula (23) is zero for the indicated power 
coordinate functions 1, x, x2, x3, x4, then due 
to linearity of the residual, the formula (23) is 
exact for all algebraic polynomials of degree 
not higher than 5 . That is, it is proved that the 
error order of the numerator of the right side 
of (23) is 6, that is, O(h6) . Therefore, the error 
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of the second derivative in (23) is O(h4) = 
O(h6)/h2 .

By symmetry, we construct a second finite 
difference operator of second order S, which 
by the same rule acts on a function of the 
variable y by virtue of symmetry (21) .

For the function of two variables f(x, y) for 
the Laplace operator, in view of (21), (23), we 
obtain:

( ) ( )0,0 1/2,0 1/2,0 1,0 1,02
1

( , ) ( , )

1 16 1
10

3 3

m n m nf A f x y S f x y

f f f f f
h − −

Δ ≈ + =

 = − + + − + + 
 

 

( )

( )
( )

0,0 0 . 1/2 0,1/2
4 4

1 22
2

0, 1 0,1

16
10

1 3  .
1

3

f f f
O h h

h
f f

−

−

 − + + − 
 + + +
 = + 
 

 

 (26)

For equal steps h
1
 = h

2
 = h, the formula (24) 

transforms into the formula:

( )

( )

1,0 1,0 0,1 0, 1

4
1 1 1 12 ,0 ,0 0, 0,
2 2 2 2

0,0

1

3

1 16
,

3

20

f f f f

f f f f f O h
h

f

− −

− −

 − + + + + 
 
  

Δ ≈ + + + + − +   
  

 − 
 

 (27)

that is (22) .
The proof of Lemma 2 is complete .
Lemma 3 . The sum of the fourth partial 

derivatives in (17) with the accuracy O(h4) in 
the form of a quadrature formula in the case 
h

1
 = h

2
 = h can be represented as:

(

4 4

0,0 0,04 4

0,0 1 2 14

( , ) ( , )
(A ) (S )

1 1053 27
1512 162 ,

2 2

f x y f x y
A f S f

x y

f Q Q K
h

∂ ∂
+ ≈ + =

∂ ∂

= − + − 


   

  (28)

where Q
1
, Q

2
, K

1
 are defined in (13)–(15) .

The proof is carried out according to a 
scheme similar to the proof of Lemma 2 .

Next we follow Remark 6. We consider the 
fourth partial derivative f

xxxx
(IV)(x)  as a linear 

operator of the function f(x) of the variable x . 
We approximate using the pattern seven 
equidistant nodes at the segment [-h, h], 
symmetrically located relative to the grid origin 
(Pic . 2b):

( )
( ) ( )

0 0 1 1/3 1/3(IV)
4

2 2/3 2/3 3 1 1

1
(0)  .xxxx

I f I f f
f

h I f f I f f

−

− −

 + + +
 =
 + + + + 

   (29)

Using the method of indeterminate 
coefficients, we find the weight coefficients I

0
, 

I
1,

 I
2, 

I
3
 in the formula (27), similarly to the 

reasoning given in Lemma 2, so that it has the 
maximum algebraic order of error [8, p . 40] 
(see Remark 7) . Nontrivial equations will be 

obtained only in the following orders of even 
degree x:
1) (4)

0 0 0 0( ) 1; (0) 0; 2 2 2 0;xxxxf x f I I I I≡ = + + + =

3) 

( )( )

2 (IV)

2 2
2

0 1

2 2

2

2 2
3

1 2 3

( ) ; (0) 0;

0
3 3

2 2

3 3

0;I 4 9 0;

xxxxf x x f

h h
I I

h h
I

I h h

I I

= =

      + − + +          
 

     + − + + =           
 

+ − + 
 
 
= + + =

5) 

( )( )

4 (IV)

4 4
4

0 1

4 4

2

4 4
3

1 2 3

( ) ; (0) 24;

0
3 3

2 2

3 3

0; I 16 81 972;

xxxxf x x f

h h
I I

h h
I

I h h

I I

= =

      + − + +          
 

     + − + + =           
 

+ − + 
 
 
= + + =

7) 

( )( )

6 (IV) 2

0

6 6
6

0 1

6 6

2

6 6
3

1 2 3

( ) ; (0) 360 0;

0
3 3

2 2

3 3

0; I 64 729 0 .

xxxx x
f x x f x

h h
I I

h h
I

I h h

I I

=
= = =

      + − + +          
 

     + − + + =           
 

+ − + 
 
 
= + + =

We obtain SLAE and its solution:
0 1 2 3 1 2 3

1 2 3 1 2 3

0 1 2 3

2 2 2 0;I 4 9 0;
 .

I 16 81 972;I 64 729 0

1053 27
I 756,I ,I 162,  .

2 2

I I I I I I

I I I I

I

+ + + = + + =  
 + + = + + =  
 = = − = = − 
 

Then from this for (27) we obtain a 
quadrature formula with the found coefficients:

( )

( ) ( )

( )

0 1/3 1/3
(IV)

4

2/3 2/3 1 1

4

1053
756

1 2(0)
27

162
2

 .

xxxx

f f f
f

h
f f f f

O h

−

− −

 − + + 
 = +
 + + − + 
 

+

  (30)

After arguments, similar to those, given in 
Lemma 2 following the formula (23), it follows 
that the error order of the numerator of the 
right-hand side of (28) is proved and it is equal 
to eight, i . e . O(h8) . Therefore, O(h4) = 
O(h8)/h4 .

For the function of two variables f(x, y), by 
analogy with the arguments given in Lemma 2, 
we obtain:
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( )

( ) ( )

4 4

0,0 0,04 4

0,0 1/3,0 1/3,04
1

2/3,0 2/3,0 1,0 1,0

( , ) ( , )
(A ) (S )

1 1053
756

2

27
162

2

f x y f x y
A f S f

x y

f f f
h

f f f f

−

− −

∂ ∂
+ = + =

∂ ∂

= − + +


+ + − + +


   

( )

( ) ( )

( )

0,0 0, 1/3 0,1/3

4
2

0, 2/3 2/3,0 0, 1 0,1

4 4
1 2

1053
756

1 2
27

162
2

 .

f f f

h
f f f f

O h h

−

− −

 − + + 
 + +
 + + − + 
 

+ +

  (31)

For equal steps h
1
 = h

2
 = h the right side of 

the formula (29) takes the form:

( )

0,0 1 1 1 14 ,0 ,0 0, 0,
3 3 3 3

2 2 2 2
,0 ,0 0, 0,

3 3 3 3

1,0 1,0 0,1 0, 1

1 1053
1512

2

162

 .
27

2

f f f f f
h

f f f f

f f f f

− −

− −

− −

   − + + + +       
 

+ + + −    + 
  − + + +    

The formula (28) is proved .
The proof of Lemma 3 is completed .
Lemma 4. The fourth mixed derivative 

4

2 2

( , )

m

n

x x

y y

f x y

x y =
=

∂
∂ ∂

 with the accuracy O(h4) in the case 

h
1
 = h

2
 = h is represented in the form:

Pic. 4 a, b. Numerical solution of the Dirichlet problem for the Poisson equation: a) numerical solution of the 
problem (4) using the formula (13) and the right part in the form of a QR code using the formula (5) (second 

program), b) fields of level lines constructed according to Pic. 4a. 

a)

b)
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4

2 2

2
0,0 2 1

4
4

1 2 3

( , )

160 16
100 ( )

1 3 3 (h ),
10 16 1

3 9 9

m

n

x x

y y

f x y

x y

f K Z
O

h
K Z Z

=
=

∂
=

∂ ∂

 − − + + 
 = +
 + − + 
 

 (32)

where K
1
, K

2,
 Z

1
, Z

2
, Z

3
 are defined in (15) .

We carry out the proof constructively on the 
basis of the formula (23) . According to the 
second variable of the function f(x, y), for each 
term of the formula (23), we apply a second-
order finite difference operator defined in the 
proof of Lemma 2 . To explain this, we use the 
fourth grid pattern (see Pic . 2b) . We also use the 
symmetry of applying the differentiation 
operator in (21) . In this case, the first argument 
with respect to the variable x cannot change, the 
second indices of the node values change 
according to the formula (23) . Since the error 
in the variable x is of order O(h4), then the initial 
number of terms q will increase by no more than 
q2  times, that is, the number of terms q2 will be 
finite and will have an error of the form O(h4)  
with the classical properties of the «O large» . We 
build the formula for the case h

1
 = h

2
 = h (33) .

That is, we get (30) .
The proof of Lemma 4 is complete .
Next, we substitute all proved formulas (19), 

(22), (30) into the blank (18) and we obtain (13) . 
That is, Theorem 1 is proved .

4. Testing the formula (13)
Using a simple iteration formula (13) and a 

test example (8) with a solution written through 
elementary functions (9), we compose a program 
using modern high-level language Fortran [10] 
that supports maximum solution arrays . Let us 
calculate the residuals between the difference 
numerical solution of the problem (8) and the 
projection of the exact solution (9) onto the grid 
nodes of the base grid (6) according to the 
Chebyshev norm . For example, the program 
with a «coarse» given number of iterations and 
parameters of values specifying the number of 
points in the area m = 2000, n

1
 = n

2
 = 10, 

calculates the Chebyshev norm (module of the 
maximum difference between the numerical and 
exact value at the grid node) for the residual 
2 .113(e-7) . And for a given number of iterations 
and parameters of values that specify the number 
of points in the area m = 2000, n

1
 = n

2
 = 20, the 

( ) ( ) ( )( ) ( ) ( )( )

( ) ( ) ( ) ( )

(IV)
0,0 1/2,0 1/2,0 1,0 1,02

0,0 0, 1/2 0,1/2 0, 1 0,1 1/2,0 1/2, 1/2 1/2,1/2 1/2, 1 1/2,14

1 16 1
( , ) 10( )

3 3

1 16 1 16 16 1
10 10 10

3 3 3 3 3

m

n

xxyy x x

y y

f x y S f S f S f S f S f
h

f f f f f f f f f f
h

= − −
=

− − − − − − − − −

 = − + + − + = 
 

    = − − + + − + + − + + − +    
   

    

( ) ( ) ( ) ( )

( ) ( )

1/2,0 1/2, 1/2 1/2,1/2 1/2, 1 1/2,1 1,0 1, 1/2 1,1/2 1, 1 1,1

1,0 1, 1/2 1,1/2 1, 1 1,1 0,0 0, 1/2 0,1/2 1/2,04

16 16 1 1 16 1
10 10

3 3 3 3 3 3

1 16 1 1 160
10 100

3 3 3 3

f f f f f f f f f f

f f f f f f f f f
h

− − − − − − − − −

− − − −

+

   + − + + − + − − + + − + −   
   

 − − + + − + = − + + 
 

( )

( ) ( ) (

) ( ) ( )

1/2,0

2

0, 1 0,1 1,0 1,0 1/2, 1/2 1/2,1/2 1/2, 1/2 1/2,1/2 1/2, 1 1/2,1 1/2, 1 1/2,1

4
1, 1/2 1,1/2 1, 1/2 1,1/2 1, 1 1,1 1, 1 1,1

10 16 16

3 3 9

1
 .

9

f

f f f f f f f f f f f f

f f f f f f f f O h

− − − − − − − − − −

− − − − − − − −

 + +


   + + + + + + + + − + + + +   
   

 + + + + + + + + + 
  

  

(33)

Table 1

x y numerical exact

0 .000000000000000E+000 0 .000000000000000E+000 0 .000000000000000E+000 0 .000000000000000E+000

1 .25663706143592 0 .000000000000000E+000 0 .951056516295154 0 .951056516295154

2 .51327412287183 0 .000000000000000E+000 0 .587785252292473 0 .587785252292473

0 .000000000000000E+000 1 .25663706143592 0 .951056516295154 0 .951056516295154

1 .25663706143592 1 .25663706143592 0 .242612919304468 0 .242612919291777

2 .51327412287183 1 .25663706143592 0 .464240247098885 0 .464240247090147

0 .000000000000000E+000 2 .51327412287183 0 .587785252292473 0 .587785252292473

1 .25663706143592 2 .51327412287183 0 .415266199954766 0 .415266199945460

2 .51327412287183 2 .51327412287183 0 .450894988539345 0 .450894988533041
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program returns the Chebyshev norm for the 
residual 3 .306e(–9), that is, the order of the 
error of the obtained algorithm is approximately 
2 .113e(–7)/3 .306e(–9) = 61 .91 = 26 . That is, the 
order of the error is 6 O(h6)! (In parallel, 
several independent programs are created (see 
Remark 1) . Thus, the testing of the algorithm 
(10)–(31) according to the analytical example (8), 
(9) was carried out by a separate (first) program 
not related to the QR code . But the tested core of 
the first program was used in the second program 
for the QR code and using the formula (5)) .

Let us give in more detail an example of 
operation of the first program for test example 
(8) using the formula (13) with a solution written 
through elementary functions (9) with m = 
10000 (the number of iterations), and n

1
 = n

2
 = 

50 (the number of intervals of a uniform grid 
along the axes x, y):
h

1
 = 6 .283185307179587E-002,

h
2
 = 6 .283185307179587E-002 .

A brief excerpt from the table of numerical 
solutions and comparisons with the exact 
solution is shown in Table 1 at p . 38 .

The maximum value of the Chebyshev norm 
is Norma C = 1,356223466864038E-11 . From 
Table 1 it is clear that the difference in solutions 
occurs only from 11th decimals .

In this calculation, the constants take the 
following values: m = 104, n

1
 = 88, n

2
 = 96, m

1
 = 

22, m
2
 = 24, x

min 
= -11, x

max
 = 11, y

min 
= -10, 

y
max 

= 14 .
Then, the well-known «watermark» 

technology described in the literature quoted in 
[3] is used, and a suitable, agreed with «A», 
container is selected . A container with 
information is transmitted to «A», which has a 
«RO» recovery program prepared in advance . It 
is possible to transmit several different projections 
of the solution in order to restore the original 
with a lower probability of error .

Some analogy regarding the applied method 
can be traced in [11] .

Conclusions. A new specific version of 
application of various mathematical methods 
t o  b u i l d  a  s y s t e m  o f  m a t h e m a t i c a l 
substantiation of the possibility of transferring 
QR codes with the help of steganography tools 
with a high degree of reliability is proposed . 
The possibility of building software in the form 
of specialized applications for the use in the 
transport industry, for example, to transmit 
information on movement of cargo shipments, 
is shown . The reliability of results is confirmed 

by the rigorous mathematical constructions, 
tested with the account for the results of 
previously published works, as well as of their 
longtime application in various fields, such as 
various types of calculations in medicine, 
plasma physics, in theory and practice of 
pattern recognition and methods of the inverse 
scattering problem, electrostatics and 
magnetostatics, hydrodynamics, etc . The 
advantage of the method is its ability to apply 
currently available developments and programs 
in the specified application areas .
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