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Background. The increase in air temperature 
occurring in recent decades on a global scale and in 
the territory of the Russian Federation has an impact 
on many natural processes, including the hydrological 
regime of rivers [1]. Since ice regime is the element, 
which is the most sensitive to warming, it becomes 
extremely important to identify long-term changes in 
the duration of freeze-up and in thickness of the ice 
cover. For obvious reasons, these studies are of 
particular importance in the conditions of the regions 
of the North of the Russian Federation. The changes 
in the timing of the beginning and end of freezing of 
revers, thickness of ice influence the duration of 
operation of winter roads, ice crossings, as well as of 
river shipping season [2, p. 226]. Under these 
conditions, it is important to clearly organize and 
control transportation of goods and passengers using 
m o d e r n  s a t e l l i t e  n av i g a t i o n  a n d  m o b i l e 
communications [6–9, 14–17].

Objective. The objective of the authors is to 
forecast  shipping seasons for northern rivers using 
Markov chains.

Methods. The authors use mathematical 
methods, theory of Markov random processes, 
methods of homogeneous Markov chains, data and 
statistics analysis, probability theory, Bayes theorem.  

Results.
1. Statement of the task
The object of the research comprises a part of the 

natural system of the North of the Russian Federation, 
the indicators of which state change and to describe 
whose conditions are characterized by changing 
indicators, and it is suggested to describe the changes 
there-of with the help of Markov process theory.

Definition: in our case, the system will be 
understood as the natural system of the region, in a 
narrower sense as  the nature of the water basin with 
conditions that characterize ice phenomena on the 
navigable river.

It is necessary to introduce the concept of the 
state of the system, particularly of the state associated 
with ice phenomena on the river. Then the system 
considered by us can get two states:

1) navigation –  there is a process of transportation 
of goods and passengers;

2) lack of navigation –  the process of transportation 
of goods and passengers is not carried out.

These two states involve two random events:
• beginning of navigation;
• end of navigation.
So-called ice phenomena on the river are 

associated with these random events. In spring, the 
following natural events of interest occur:

• beginning of the spring ice drift;
• end of the spring ice drift.
In the autumn, events of opposite nature occur:
• beginning of the autumn freeze-up;
• end of the autumn freeze-up.
Since each calendar date of the year corresponds 

to a day number, which varies from 1 to 365, we can 
say that random variables are associated with the 
above random events, respectively:

• the number of the day in the year when 
navigation began;

• the number of the day in the year when 
navigation ended.

The transition to the new state of the system for 
the spring period leads to formation of a new actual 
number of the day of beginning of navigation in the 
new season.

Transition to the new state of the system for the 
autumn period leads to formation of a new actual 
number of the end date for navigation in the new 
season.

Meteorological services have been collecting 
statistics for decades on beginning and end of the 
described natural phenomena. To use the available 
statistical data to forecast the timing of beginning and 
end of navigation, we make the following assumptions:

1. The beginning of navigation on the navigable river 
of the region coincides with the date of the end of ice 
phenomena in spring, which corresponds to the actual 
number of the day of the beginning of navigation.

2. The end of navigation on the navigable river of 
the region coincides with the date of the beginning of 
ice phenomena in the autumn, which corresponds to 
the actual number of the day of the end of navigation.

The accepted assumptions are confirmed by the 
analysis and comparison of the data of actual 
navigation periods and the specified periods of ice 
phenomena.

As a result, for the navigable river we have two 
statistical sequences of random numbers arranged 
chronologically. These random numbers are numbers 
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of calendar days, respectively, of beginning and end 
of navigation on the navigable river, arranged by years.

The set of possible values of the random sequence 
for the spring period is the whole set of possible 
numbers of the days of the beginning of navigation 
(coinciding with the set of dates for the end of spring 
ice phenomena) on the navigable river of the system.

The set of possible values of a random sequence 
for the autumn period is the whole set of possible 
numbers of the days of the end of navigation 
(coinciding with the set dates of the beginning of the 
autumn ice phenomena) on the navigable river of the 
system.

Conclusion: these two sequences of random 
numbers can legi t imately  be regarded as 
implementation of two random processes, the results 
of the analysis of which can be used to predict the 
beginning and end dates of navigation on the 
navigable river.

2. Using the theory of Markov processes
Let us evaluate the possibility of applying the 

theory of Markov processes to the problem of 
forecasting the beginning of navigation. First of all, we 
note that the day of beginning of navigation is formed 
once a year and, in accordance with the accepted 
assumption, coincides with the number of the day of 
the end of ice phenomena. It follows that the process 
under consideration can be attributed to random 
processes with a fixed time (season) for transition 
from state to state. The set of possible values of a 
random variable is also limited, since the numbers of 
dates of transition to the expected state are within a 
limited set of numbers.

To use the theory of Markov processes, it is 
necessary that the probability of transition from one 
state to another should depend only on the current 
state in which the system is located, and should not 
depend on the trajectory along which the system 
came to this state. An analysis of the available 
statistical data on the dates of the beginning and end 
of navigation on the northern rivers shows that the 
indicated hypothesis is being fulfilled, and, therefore, 
the Markov process theory is applicable.

3. Description of the forecasting task
Let’s call the sequence of numbers of dates of 

opening of navigation arranged in chronological order 
as the random process «Beginning of navigation» and 
show that it can be considered as a Markov chain. We 
denote the Markov process «Beginning of navigation» 

considered by us as U(t
i
), where t

i
 is the number of 

the day when navigation began in the i-th year, i. e. the 
subscript of the variable t will take the value of the 
number of the year to which the value of the random 
number «day number» belongs. For example, for the 
year 1940, the state of the Markov process will be 
denoted as U(t

1940
).

The value of the Markov process will be the 
number of the day on which opening of navigation 
occurred (the end of ice events) in the corresponding 
year. Let’s suppose, according to statistics, that the 
end of the ice events fell on May 20. The number of 
the day of May 20 is «140». Then the value of the 
Markov process in 1940 will be determined as 
U(t

1940
) =140, and in  that case the day of May 21 

the value of the Markov process will receive the 
value of the day number «2», etc.

The process we are considering is development 
of an ordered set of random variables, the value of 
which depends on the actual date of opening of 
navigation. The described process refers to random 
processes with discrete time and a discrete finite set 
of states [3, 4].

Let in the general case the number of possible 
states of the process U(t

i
) be n.

Transitions from one state to another can occur 
only at a fixed point in time. In our case, this is a new 
navigation year, which has its own number, counted 
from the beginning of the new era: 1, 2,…, k,…  Thus, 
we get a step-by-step process in which the conditional 
year number is the system step number. The number 
of the day of the beginning of navigation is denoted in 
the k-th navigation year as S

k
(i).

In accordance with the accepted definition [3, 
p. 106], a random sequence is called a Markov chain 
if the conditions are met:

1. At any time t, a random sequence takes one of 
possible states S

1
, S

2
, …, S

n
,

2. For each step k = 1, 2,… the events S
1
(k), S

2
(k), 

…, S
n
(k) are inconsistent and form a complete group 

of events.
3. For each step, the probability of transition from 

any state S
i
 to any state S

j
 does not depend on when 

and how the system S was in the state of S
i
.

The fulfillment of the first condition can be ensured 
if the moment of the change in the state of the random 
process U(t

i
) introduced by us is superposed with the 

moment of beginning of navigation in each year. Then 
the condition that at any moment of time t the process 
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can remain in only one state is satisfied. The second 
condition is also satisfied, since the events of the 
random process U(t

i
) i = 1, 2, 3,…, are by definition 

inconsistent and form a complete group of events.
As a hypothesis (which we formulate from the 

analysis of available data) we assume that the third 
condition is also satisfied.

Thus, the random process U(t
i
) «Beginning of 

navigation», consisting in a random step-by-step 
change of the date of beginning of navigation, is 
considered to be a Markov chain. The set of possible 
values of the Markov chain is the set of possible 
numbers of dates of beginning of navigation.

Analysis of available data on beginning of 
navigation on the northern rivers shows that the 
process can be viewed as a homogeneous Markov 
one, in which the probability of transition to another 
state depends only on the current state of the 
process, but does not depend on the step number 
(in our case, on the year number) [3].

4. Building a matrix of transition probabilities
The baseline data for determining the transition 

probabilities matrix of a homogeneous Markov chain 
is the set of states S

1
, S

2
,…, S

n
, which in our case 

are statistical data on the starting dates of navigation 
on the navigable river.

Using the conditional number of the day instead 
of the beginning date of navigation provides the 
possibility to solve two problems:

1. Building a matrix of transition probabilities.
2. Obtaining an objective estimate of the 

probability for the state of the system in the next 
step based on its current state.

In fact, the second task is the task of generating 
a forecast for beginning of next year shipping 
season using information on the date of navigation 
in the current year and the matrix of transition 
probabilities.

The transition probability matrix (transition 
probabi l i t ies)  character izes the t ransi t ion 
probabilities of the process with the current state 
S

i
 to the state S

j
 in the next step. This is a square 

matrix (1) with the number of rows and columns 
equal to the number of possible states. Each row of 
the matrix corresponds to one possible state. Each 
column is one possible transition state. The element 
of the matrix p

ij
 corresponds to the probability of 

transition of the system from state i to state j. The 
physical meaning of the probability p

ij
 means the 

probability of the beginning of the navigation period 
in the next calendar year on the j-th day of the year, 
if in the current year the navigation began on the 
i-th day.

In general, the Markov process has n possible 
states, the number of which in our case depends 
on the number of dates when navigation began in 
the navigable river in the region. Since the analysis 
shows that the transition probabilities do not 
depend on the step number, the Markov process, 
that we consider, is homogeneous. Thus, the 
dimension of the matrix will be n • n.

General view of the matrix of transition probabili-
ties:

p11     p12      …  p1n

p21     p22      …  p2n

pn1     pn2      …  pnn

      …  
P = [pij] = . (1)

On the main diagonal of the matrix (1) there are 
the probabilities that the system remains in the 

corresponding state. Since at each step the system 
can only be in one of the mutually exclusive states, for 
any non-zero row of the matrix, the sum of the 
probabilities p

ij
 will be equal to one:

=
=∑ 1

1
n

ijj
p ,   (2)

where p
ij
 –  probability of transition of the system from 

state i to state j at any step.
In accordance with the designated theoretical 

approach [3, 4], the forecast of the state of the 
system is estimated by the probabilities of possible 
states of the system at the next (k + 1) step, with a 
known state of the system at the k-th step represented 
by the homogeneous Markov chain model. The 
forecast can be calculated as follows.

Let the current state of the system be S
i
. Then 

the i-th row of the matrix of transition probabilities 
p

i1
, p

i2
,…, p

in
 shows the conditional probabilities of 

the onset of the state S
1
, S

1,…,
 S

n 
in the next step, if 

the current state is S
i
.

In our case, the interpretation of these events is 
as follows. The state of S

i
 is the number of the day in 

the current year when navigation began. The 
transition probabil it ies p

i1
,  p

i2
,…, p

in 
are the 

probabilities that next shipping season will start on 
the day with the number S

1
,

 
S

2
,…, S

n
 respectively.

5. Estimation of the probability of an accurate 
forecast

This kind of estimation has its meaning in terms 
of effectiveness of the method itself. To obtain it, it 
is necessary to enter the concept of an accurate 
forecast. Based on the already tested dependencies 
and assumptions:

1. The forecast using the apparatus of homogeneous 
Markov chains is constructed in the current year for the 
next year after beginning of navigation in the current 
year, i. e. after receiving information about the actual 
date of beginning of navigation.

2. We will consider the forecast accurate if the 
actual date of beginning of navigation in the next year 
will not differ from the forecast date by more than 
one day.

Let the system in the current year be in state S
i
, 

which corresponds to the actual date of beginning 
of navigation in the current year. Let’s choose some 
state S

j
 (it is the date of beginning of navigation) as 

a forecast of beginning of navigation next year, 
assuming that the total relative probability of 
transition from the current state S

i
 to state S

j
 or to 

neighboring states S
j-1

 and S
j+1

 is maximum. Let’s 
denote the transition states for each current i-th state 
as S

jmax
, S

jmax-1
, S

jmax+1
, and the probability of an 

accurate forecast as p(F
exec

). Then, in accordance 
with the Bayes theorem [5, p. 42], the absolute 
probability of an accurate forecast is determined as 
follows:

→

=
+

+
=

+ +∑ max 1

1
max max 1

( )[ ( )
( )

( ) ( )]

n i ij

exec i
ij ij

p S p S
p F

p S p S ,
  (3)

where p(S
i
) –  absolute probability of the event S

i
; 

p(S
ijmax

), p(S
ijmax-1

), p(S
ijmax-1

) –  relative probabilities of 
occurrence of events (consecutive dates of beginning 
of navigation in the next season) with the maximum 
total relative probability.

3. We will consider the forecast accuracy to be 
satisfactory if the actual date of beginning of 
navigation in the next year will not differ from the 
forecast date by more than three days.

Then, in accordance with the Bayes theorem [5], 
the absolute probability of an acceptable forecast is 
determined as follows:
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max 3 max 2 max 1 max

max 1 max 2 max 3

1

( )[ ( ) ( ) ( ) ( )

( ) ( ) ( )],
( )

i ij ij ij ij

ij ij ij

n

exec i

p S p S p S p S p S

p S p S p S
p F

→ → →

+ + +

=

+ + + +

+ + +
= ∑   (4)

where p(S
i
) –  absolute probability of the event S

i
; 

p(S
ijmax

), p(S
ijmax-1

), p(S
ijmax-2

), p(S
ijmax-3

), p(S
ijmax+1

), 
p(S

ijmax+2
), p(S

ijmax+3
) –  relative probabilities of 

occurrence of events (groups of consecutive dates 
of beginning of navigation in the next season) with the 
maximum total relative probability.

4. We will consider the accuracy of the forecast 
unsatisfactory if the actual date of beginning of 
navigation in the next year will differ from the forecast 
date by more than three days.

Conclusion. The use of the Markov random 
processes theory makes it possible to develop a 
scientifically based forecast of the start of next river 
shipping season in the north of the Russian Federation  
long before resumption of cargo and passenger 
shipping. A similar approach can be applied to 
forecast the timing of completion of navigation. This 
helps to eliminate material losses associated with 
uncertainty of the period of operation of waterways in 
the zone of extreme climatic conditions [11–13]. 
Testing the method on real data showed that the 
forecast accuracy and the probability of its 
implementation are sufficient for effective organization 
and conduct of preparatory work before the next 
navigation on the northern navigable river.
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