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Background. To determine the rational 
boundaries for increasing axial loads of rolling stock, 
it is necessary to know the dependence of intensity 
of deformation of the roadbed on the level of axial 
loads.

According to normative documents, a roadbed is 
designed for an acceptable load of 30 tf and a service 
life of 100 years [1–3]. At the same time, field 
observations show that zones of plastic deformation 
occur on certain sections of a track before the ultimate 
state occurs in the body and the base of the roadbed 
under the action of mobile load, weight of soil and 
weight of a track superstructure.

According to the Center for Inspection and 
Diagnostics of Engineering Structures, during the last 
fifteen years the extent of deformed and defective 
places of the roadbed on the Russian rail network 
remains at the level of 5,9–8,9 %, or 6890–7760 km 
[4]. Ballast deepenings, sediments and water-bearing 
pockets are the most widespread deformations. Their 
share is 73 %. All these deformations are associated 
with a violation of load-bearing capacity of soil of the 
main site and the active zone of the roadbed.

As a result of long-term operation of the railway 
track, serious changes in the construction of the 
roadbed occurred. Clay soils were loaded with 
powerful layers of sand and gravel. These dumps from 
draining soils, as shown by the results of a continuous 
survey of embankments on railways, are not 
compacted and create a peculiar moisture regime of 
soils in the upper part of the roadbed.

The layer of accumulated ballast and drainage 
materials was formed as a result of insufficient load-
bearing capacity of clay soils, as the construction 
norms and rules of SNiP II-39-76, which were in force 
earlier, regulated location of the ballast prism directly 
on clay soils. On the construction main platform, 
plastic deformations formed ballast deepenings –  
trapezoidal ditches and runways. The moisture of 
clayey soils in places with these deepenings is 1,2–1,3 
times higher than at a level with a drainage area [5].

With this in mind, ensuring strength and 
permissible value of accumulation of residual 
deformations of the roadbed with introduction of 
heavy traffic technology with the use of freight cars 
with increased axial loads is an actual problem.

Objective. The objective of the authors is to 
consider deformability of a roadbed active zone under 
the influence of a train with increased axial loads.

The article presents the results of theoretical 
studies of residual sediments of the roadbed from the 
impact of freight cars with axial loads up to 30 tf.

Methods. The authors use general scientific and 
engineering methods, Mohr – Coulomb modified 

model, mathematical methods, graph construction, 
simulation.

Results.
Selection of a soil model
For reliable prediction of suitability of the roadbed 

of a railway track, it is necessary to justify the choice 
of an adequate soil model in accordance with the 
purpose of the calculations performed. In our case, 
the problem of comparative estimation of accumulation 
of residual deformations of the active zone of the 
railway track from the values of axial loads of rolling 
stock was solved.

I n  m o d e r n  g e o t e c h n i c a l  c a l c u l a t i o n s , 
mathematical models of soils of varying degrees of 
complexity are used. In simpler models, there are 
fewer input parameters and defining equations are 
simple and clear. However, the results of the 
calculation may not correspond to the actual work of 
soil in a wide range. Advanced, complex calculation 
models make it possible to describe the behavior of 
soil more accurately, but request a greater number 
of different characteristics. Let’s consider the most 
well-known soil models.

To describe the nonlinear behavior of clays for 
small deformations, the Jardine (R. Jardine) model is 
used [6]. Unlike the Tresca (Henri Édouard Tresca) 
model, which is used in calculations taking into 
account the plastic behavior of the material, when the 
stresses in the material exceed the specified shear 
strength, the Jardine model is nonlinearly elastic, 
which describes the behavior of the material at small 
deformations.

The D-min model is generally considered as a 
sectional linear model of strong and weak soils [6]. 
Such models are characterized by different stiffness 
at each stage of erection, but they are normalized in 
such a way that rigidity has a fixed value within the 
individual stage of erection. It is believed that the 
elastic modulus decreases, and the Poisson’s ratio 
increases as the Mohr’s circle approaches the 
destruction curve.

The values of the elastic modulus and Poisson’s 
ratio in each section are determined by the relative 
distance between the Mohr’s circle and the destruction 
curve. The material properties parameters for this 
model remain constant within each loading stage, that 
is, they do not need to be recalculated.

The ratio of stresses and deformations for soil 
materials becomes nonlinear as it approaches the 
destruction curve, and this can be taken into account 
by adjustment of the modulus of elasticity of the base. 
The function of the hyperbolic Duncan – Chang model 
is used to determine the modulus of elasticity of the 
base [7]. The stress-strain curve is a hyperbola, and 
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ABSTRACT
A finite-element model of a railway embankment 

was developed. Calculations of residual deformations 
of an active zone of a roadbed using the modified 
Mohr – Coulomb model in an elastoplastic setting, 
as well as a comparative evaluation of residual 
sediments of soil during cyclic loading from wheels 

of rolling stock with axle load values of 23.5; 25; 27 
and 30 tf were carried out. It is shown that as the 
loading cycles increase, the dependence of 
accumulation of residual deformations for clay soils 
asymptotically tends to a consolidation line of II kind. 
The intensity of accumulation of residual deformations 
is higher, the greater are soil moisture and axial load. 
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the modulus of elasticity of the base is a function of 
tangential stress and stress created by hydrostatic 
pressure.

The Drucker – Prager model was developed to 
solve numerical problems arising at the corners of the 
yield surface of the Mohr – Coulomb model [8]. The 
yield function is defined in such a way that deviator 
voltages can increase or decrease depending on the 
hydrostatic pressure value.

The modified Cam-Clay model is a model of clay 
materials based on the theory of elastic-plasticity with 
hardening [8]. To formulate the modified model, all 
components of effective stresses are used, as well as 
the nonlinear elastic method and the implicit inverse 
Euler method. Nonlinear elastic behavior is 
represented by an increase in the bulk modulus of 
elasticity at a given pressure. The associated flow law 
is also applied, and the fracture surface may increase 
or decrease, which depends on consolidation or 
decompression. To use the modified Cam-Clay 
model, the values of the coefficient of initial porosity, 
natural stresses, and presalting pressures are 
required.

The hardening soil model (Hardening Soil, 
Modified Mohr – Coulomb) uses the hyperbolic 
dependence of deformations on deviator voltages, 
which more accurately corresponds to the actual 
behavior of the soil [9–11]. In addition, the modulus 
of deformation of unloading is introduced into the 
model when the stresses in the elements decrease.

Analysis of soil models showed that the Hardening 
Soil model realized in the Plaxis software package can 
provide the best result for obtaining high accuracy of 
geotechnical calculations. It requires a significant 
number of input parameters for physical and 
mechanical properties of soils obtained during 
experimental studies.

Taking into account that in this paper the task was 
to assess deformability of the active zone of the 
roadbed from the values of axial loads, as well as 
considerable variety of physicomechanical parameters 
of soils from which the roadbed of railways is composed, 
a Mohr – Coulomb model was chosen for calculation, 
reference data were taken as initial data.

The modified Mohr – Coulomb model is designed 
to simulate the behavior of granular materials such as 
soils under the action of a load and is characterized 
by the following functions:

• the material is strengthened as the pressure 
increases;

• the model uses isotropic hardening;
• inelastic behavior is usually accompanied by a 

change in volume;
• the law of plastic flow can be associative and 

nonassociative;
• material properties may depend on temperature;
• the behavior of soil depends on the hydrostatic 

pressure.
In this elastoplastic model, there is a yield fuction 

in the form of Mohr – Coulomb model, which includes 
isotropic cohesion hardening / softening. The model 
uses the potential of plastic flow, which has a 
hyperbolic form in the meridian plane and has no 
vertices in the deviator plane. This potential is smooth 
and allows one to uniquely determine the direction of 
the plastic flow.

The modified Mohr – Coloumb model
To describe the behavior of  soi l  during 

compression, a hyperbolic yield surface is used 
[12]. During compression, the plastic flow is 
considered independent of the effect of pressure 

and is determined only by deviator voltages. The 
soil is considered to be an isotropic material, so that 
the yield surface can be represented as a function 
that depends on three invariants of the stress 
tensor.

For equivalent stresses on pressure:
1

:
3

p Iσ= − ⋅ ,

where σ –  Cauchy stress tensor; I –  unit tensor of the 
second order.

For equivalent stresses of Mises:

3
:

2
q S S= ,

where S = pI+σ –  stress deviator.
Invariant of deviator stresses:

1

39
:

2
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.

In some meridional plane, the Mohr – Coulomb 
flow surface is represented as:

tg c 0mcF R q p ϕ −= − = ,

where ϕ (θ, fα) –  angle of internal friction in the 
meridian plane, θ –  temperature, fα(α = 1,2…) –  other 
field variables;

( , , )plc e f αθ – change in specific hardening 

(or softening) through specific cohesion;
ple  –  equivalent plastic deformation, the speed 

of which is determined by the equation of plastic work 

:pl plce eσ=

 ;

R
mс

 –  measure of deviator stresses of Mohr – 
Coulomb, defined by the expression:
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where Θ –  deviator-polar angle [12]: 

( )
3

cos 3
r

q

 
Θ =  

 
.

The shape of the yield surface in the deviator plane 
is determined by the angle of internal friction ϕ : 
0 < ϕ < 90°.

The potential of the plastic flow in Mohr – Coulomb 
model:

pl
pl de G

de
g σ

∂
=

∂
,

where g shall be represented in a form of expression 
1

:
G

g
c

σ
σ

∂
=

∂
;

G –  plastic flow potential, which is a hyperbolic 
function in the meridian plane and a smooth elliptic 
function in the deviator plane: 

( ) ( )2 2

0 tg tgmwG c R q pε ψ ψ= + − ;

ψ(θ, fα) –  dilatation angle in the plane p –  R
mw

q at 
a high value of the all-round pressure

0, 0pl ple e
c c

=    = 

c
|0 

= 0 –  initial specific cohesion;
ε –  eccentricity determining speed of the plastic 

flow potential.
The presented potential function at large values 

of the all-round pressure asymptotically tends to a 
linear plastic flow potential and crosses the hydrostatic 
pressure axis at an angle of 90°.
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Pic. 2. Stress-strain state of the railway embankment when rolling of wheel of rolling 

stock.

Considering the fact that we are analyzing the stress-strain state of the under-

sleeper base, axial load in the model was set as the external force P, distributed on 

three adjacent sleepers (under-sleeper base) in a ratio of 0,25P, 0,42P, and 0,25P. 

This procedure excludes the expenditure of computer time for calculating the stress-

strain state of the elements of rails and sleepers, reducing the counting time.

Since the stress state in the roadbed reduces significantly with increasing depth 

from the sole of the sleeper from the impact of rolling stock is significantly reduced, 

the active zone of the road bed 2 m deep from the sole was considered in the model.

Pic. 3 shows the finite-element model of a 5 m long section (roadbed, ballast) 

with boundary conditions and a scheme for applying vertical loads. The 

characteristics of the materials used in the model are given in Table 1.

In the deviatorial plane, the plastic flow potential 
is continuous and smooth [13]:

1

2 3

( , )mw mc

R
R e K

R R
θ =

+
,

where 2 2 2
1 4(1 )cos (2 1)R l eθ= − + − ;

2
2 2(1 )cosR e θ= − ;

2 2 2
3 (2 1) (1 )cos 5 4R e e e eθ= − − + − ;

(3 sin )

3 6cosmc mcK R
p ϕϕ

ϕ
− = = 

 
;

ρθ – deviator polar angle;

e –  a parameter representing the degree of 
difference from the circular shape for the yield surface 
in the deviator plane as the ratio of tangential stresses 
along the extension meridian ( 0θ = ) to tangential 

stresses along the meridian of compression 

(
3

pθ = ). The parameter e depends on the angle of 

internal friction ϕ and is calculated by equating the 
plastic flow potential to the flow surface in the deviator 
plane:

3 sin

3 sin
e

ϕ
ϕ

−
=

+
.

Because of convexity of the material and 
smoothness of the elliptic function, the following 
condition must be satisfied: ½ < e ≤ 1.

When the angle of internal friction ϕ is equal to the 
dilatation angle ψ, the parameter e is small. The plastic 
flow in the meridional plane is close to the associated 
one.

In the general case, the plastic flow in the 
meridional plane is unassociated. The plastic flow in 
the deviator plane always remains unassociated.

Pic. 1. Finite element model of the upper and lower structure of a railway track.

Pic. 2. Stress-strain state of the railway embankment when rolling of wheel of rolling stock.

Table 1
Characteristics of the materials of upper and lower structures of a track

Material Density, kg/m3 Young’s modulus, Pa Poisson’s ratio

Steel (rail) 7800 210е9 0,30

Concrete (sleeper) 3000 30е9 0,25

Rubber (gasket) 1300 9е8 0,45

Crushed stone 2500 254е6 0,27

Sand 2500 100е6 0,40

Ground 2000 4е7 0,40
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Finite-element model
To study the residual deformations of the roadbed 

from the values of axial loads, a finite-element model 
of the upper and lower structure of the track was 
developed (Pic.1). It includes rails and sleepers 
consisting of R 65 rails, intermediate rail fasteners, a 
ballast layer 0,4 m thick, a sand cushion 0,2 m thick 
and a roadbed with standard parameters. The 
roadbed serves as a base of track superstructure and 
perceives load from it and rolling stock. The calculated 
embankment and the design of track superstructure 
are designed in accordance with the requirements of 
SP 119.13330.2012, SP 32-104-98 [2, 3].

The scheme of the model of the railway 
embankment is symmetrical relative to the axis OX, 
stress-strain state of the embankment during rolling 
of wheel of rolling stock is shown in Pic. 2.

Considering the fact that we are analyzing the 
stress-strain state of the under-sleeper base, axial 

load in the model was set as the external force P, 
distributed on three adjacent sleepers (under-sleeper 
base) in a ratio of 0,25P, 0,42P, and 0,25P. This 
procedure excludes the expenditure of computer time 
for calculating the stress-strain state of the elements 
of rails and sleepers, reducing the counting time.

Since the stress state in the roadbed, caused by 
the impact of rolling stock, reduces significantly with 
increasing depth from the sole of the sleeper, the 
active zone of the road bed 2 m deep from the sole 
was considered in the model.

Pic. 3 shows the finite-element model of a 5 m 
long section (roadbed, ballast) with boundary 
conditions and a scheme for applying vertical loads. 
The characteristics of the materials used in the model 
are given in Table 1.

The model requires the input of the following 
parameters: modulus of elasticity E, Poisson’s ratio, 
angle of internal friction and dilatancy. The last two 
serve to determine the state of fluidity. The formulation 
of the defining equations assumes effective 
parameters of the angle of internal friction ϕ  and 
adhesion c.

In the calculations, the effect on deformability of 
the active zone of the roadbed, the forces transferred 
from wheels to rails and soil moisture were studied.

To estimate the effect of the axle load of a wheel 
set and soil moisture on deformation of a railway 

Pic. 3. Finite-element model of an under-sleeper base with boundary conditions and a scheme for applying 
vertical loads from three neighboring sleepers.

Table 2
Initial data of models

No .
of a model

Axle load, 
tf

Soil fluidity indicators

Soil fluidity indicators I Specific cohesion of soil, 
с*, kPa

Angle of internal friction,  ϕ**, 
deg .

1 23,5 I
1
 = 0,25 31 24

2 I
2
 = 0,45 28 22

3 I
3
 = 0,6 25 19

4 27 I
1
 = 0,25 31 24

5 I
2
 = 0,45 28 22

6 I
3
 = 0,6 25 19

7 30 I
1
 = 0,25 31 24

8 I
2
 = 0,45 28 22

9 I
3
 = 0,6 25 19

*с –  soil fluidity indicators (Cohesion Yield Stress); **ϕ –  angle of internal friction (Friction / Dilation Angle) .

Table 3
Change in residual deformations of soil

Axle load, tf Еα,
 MPa

40 60 80

23,5 0,138 0,112 0,075

30 0,213 0,157 0,100
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embankment, six calculation models were considered 
(Table 2). The calculation was carried out for a roadbed 
composed of loam with a coefficient of porosity e = 
0,65 [14]. The initial data for soil was selected on the 
basis of the analysis of the main type of the most 
common soils on the territory of Russia. As initial data 
of vertical forces during the simulation, the loads 
received during the dynamic tests of an experimental 
train including freight cars with axial loads of 23,5, 25, 
27 and 30 tf were taken [15]. The values of fluidity index, 
angle of internal friction, and specific cohesion for loam 
were selected from the reference book [14].

The physical and mechanical characteristics of 
soils composing the under-sleeper base are shown 
in Table 2.

As a result of calculations, the dependences of 
the change in residual deformations of the main area 
of the roadbed on the values of axial loads and soil 
moisture were obtained with a change in the fluidity 
index from I <0,25 to 0,5 <I <0,75.

Analysis of the curves of the changes in the 
position of the main area of the roadbed during cyclic 
loading showed at the initial moment of observation 
an abrupt change in sediment for all the options 
considered (compaction, moisture and axial loads). 
The difference consists in the values of the initial 
change in residual sediments and in the intensity of 
their accumulation before the onset of consolidation. 
The values of the changes in the residual deformations 
of soil with a different deformation modulus are 
presented in Table 3.

With further cyclic loading, the intensity of 
accumulation of sediments decreased and decreased 
monotonically with different values of the increment 
of sediments, depending on the values of axial loads, 
the modulus of deformations, and the physico-
mechanical characteristics of soil.

After 100 cycles of loading, the increment of 
residual sediments had values in the range of 10–5–
10–6 mm. With a further increase in the number of 
loading cycles, it decreased to 10–7–10–8 mm. The 
intensity of accumulation of residual deformations of 
clay soils depended on the values of axial loads, the 
degree of compactness of soil and soil moisture.

The nature of the change in increments of the 
residual sediments of the railway embankment after 
100 cycles of axial loads: 1) 23,5 tf; 2) 25 tf; 3) 27 tf; 
4) 30 tf (soil –  loam); c = 31, ϕ  = 22°, the fluidity index 
I <0,25 (dry soil) is illustrated in Pic. 4.

Analysis of simulation results showed that the 
increment of residual sediments during compaction 
of dry soils increases almost linearly along with the 
values of axial loads.

Pic. 5 shows changes in the dependence of 
increments of residual deformations with a consecutive 
increase in axial loads and cyclic loading on the 3D 
model of an under-sleeper base with a sequence of 
100 loading cycles for each load value.

With an axial load value of 23,5 tf at the initial 
moment in case of cyclic action a jumplike 
deformation characteristic of clay soils occurs. For 
the case of loams with E

g 
= 40 MPa, specific cohesion 

Pic. 4. Dependence of change in increment of residual sediments of soil at Е
g 

= 60 MPa, I < 0,25 on values of axial 
loads after 100 cycles of loading.

Pic. 5. Nature of change in the increments of residual deformations of the main area of roadbed with 
a consequent increase in axial loads with a sequence of 100 cycles of loading. Soil fluidity 0,25 < I ≤ 0,5; specific 

cohesion с = 28 kPa; angle of internal friction ϕ = 22°.
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c = 28 kPa, angle of internal friction ϕ  = 22°, at values 
of the fluidity index 0,25 <I≤ 0,5, its residual 
deformation value was up to 0,22 mm. With further 
cyclic loading, the increment of residual deformations 
decreased monotonically. With an increase in the 
number of load cycles, the dependence of the 
increment of residual deformations asymptotically 
approached the state of consolidation of the soil. An 
increase in axial load up to 27 tf determined an 
additional spasmodic increase in sediment during 
the first loading cycles, after which the sediment 
increment stabilizes at a level of 10–5 mm, tending to 
the consolidation state. With an increase in the axial 
load up to 30 tf, the nature of the change in the 
residual sediment was similar.

It should be noted that the intensity of soil 
sediment change, their total value, and, consequently, 
the degree of compaction, will be maximum at the 

highest value of the axial load. The nature of the 
intensity of changes in soil deformations during cyclic 
action up to 300 cycles with an axial load of Р

ax
 = 30 tf 

with a fluidity index I <0,25 is shown in Pic. 6.
 Dependence of the change in residual sediments 

of soil under cyclic loading by an axial load of 30 tf has 
a character of a monotonically decreasing curve 
asymptotically approaching the limiting state of 
compaction –  consolidation of clay soils of II kind.

Modeling of the change in the rate of accumulation 
of residual deformations of soils from the change in the 
fluidity index within the limits I ≤ 0,25 to 0,5 < I ≤ 0,75 
over the entire volume of the soil is carried out, which 
is characteristic of the exit of the railway track from 
winter or periods of heavy precipitation. The values of 
the increments of residual deformations of the soil for 
different moisture and axial loads are presented in 
Table 4 and in the form of graphs in Pic. 7.

Pic. 6. Nature of change in the increments of residual deformations of the main area of the roadbed under cyclic 
action with axial load Р

ax 
= 30 tf with fluidity index I < 0,25.

Table 4
Change in the increments of residual deformations of the main area of the roadbed under cyclic 

action from axial loads Р
ax 

= 23,5; 27; 30 tf at the fluidity index 
I

1
 < 0,25; 0,25 < I

2
 ≤ 0,5; 0,5 < I

3
 ≤ 0,75

Axle load, tf Soil moisture

I
1

I
2

I
3

23,5 -3,0617E-05 -3,1316E-05 -3,6438E-05

27 -4,8312E-05 -5,2969E-05 -6,2282E-05

30 -7,2876E-05 -8,1025E-05 -1,0361E-04

Pic. 7. Change of residual deformations of the main area of the roadbed under cyclic action with axial loads 
Р

ax
 = 23,5; 27; 30 tf with fluidity indicators I

1
 < 0,25; 0,25 < I

2 
≤ 0,5; 0,5 < I

3 
≤ 0,75.
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From the obtained dependences it is established 
that the change in the increments of residual 
deformations increases with increasing axial loads 
and an increase in moisture. In all cases, a gradual 
decrease in incremental values with an asymptotic 
approach to the limiting state compaction –  
consolidation of clay soils of II kind is typical for all 
cases.

For a more detailed study of the nature of the 
change in residual deformations at a soil fluidity index 
of 0,5 <I ≤ 0,75 and cyclic action with an axial load of 
30 tf, calculations of the change in residual 
deformations are performed.

Studies of the effect of watering the soil in a local 
zone, characteristic of wet spills, have also been 
carried out. To do this, the finite-element 3D model 
of the under-sleeper base is modified: the main part 
of the soil has a moisture content I ≤ 0,25, and in the 
local zone under three adjacent sleepers the soil has 
a moisture content with a fluidity index of 0,5 <I ≤ 0,75. 
The model with watering of the soil in the local zone 
is shown in Pic. 8.

The results of modeling the change in residual 
deformations for watered, partially watered in a local 
area and for dry soil under cyclic loading by an axial 
load of 30 tf based on 300 cycles are shown in Pic. 8.

The greatest value of deformation from the 
moment of the beginning of cyclic loading to 
achievement of consolidation was reached at loads 
of 30 tf and a fluidity index of 0,5 ˂ I ˂ 0,75.

On an embankment composed of loam with a 
deformation modulus Е

g
 = 60 MPa and a fluidity index 

I ≤ 0,25, the residual deformation until reaching a state 
close to consolidation did not exceed 0,15 mm, with 
a soil fluidity index of 0,5 ˂ I ˂ 0,75 at Е

g
 = 40 MPa, 

the residual deformation was 0,45 mm.
When watering the soil in a local zone, the value 

of the residual deformation was 0,35 mm, taking an 
intermediate value, which can be explained by an 
increased resistance to residual deformation of 
adjacent non-watered sections of the roadbed.

On the basis of the dependences obtained, it is 
established that the moisture state of the soils of the 
under-sleeper base has a significant effect on the 
accumulation of residual deformations.

Conclusion.
1. A finite-element 3D model of a three-layer 

railway embankment was developed using the 
modified Mohr – Coulomb model, taking into 
account the behavior of soil in the elastoplastic 
zone. The process of accumulation of residual 
deformations under cyclic loading by axial loads of 
23,5, 25, 27 and 30 tf with change of the soil fluidity 
index from I ˂  0,25 to 0,5 ˂  I ˂  0,75 was performed, 
with soil watering in the period of transition of 
railway track from winter season or a period of heavy 
precipitation, with partial watering in local areas, 
characteristic of wet spills.

2. As a result of modeling the process of filling 
residual deformations under cyclic loading with 

a)

b)

Pic. 8. Change in the increments of residual deformations (a) and residual deformations (b) of the main 
site of the roadbed under cyclic action with axial loads of Р

ax
 = 30 tf with different soil moisture content 

of the under-sleeper base.
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axial loads of 23,5; 25; 27 and 30 tf, it  was 
established that for clay soils in the entire range 
of loads and moisture examined the nature of 
accumulation of residual  deformations had 
characteristic phases:

• in the initial period (phase 1), the change and 
increment of  residual  deformat ions had a 
discontinuous character, while the higher was the 
axial load and moisture, the higher were the values 
of increments of residual deformations;

• the second phase: the transition zone from the 
intensive accumulation of residual deformations to 
a monotonically decreasing one;

• the third phase: the zone of minimum 
increments of residual deformations, at which the 
incremental curve asymptotically tends to the state 
of limiting compaction–consolidation of soils of II 
kind.

3. On an embankment composed of loam with a 
deformation modulus Е

g
 = 60 MPa and a fluidity index 

I ≤ 0,25, the residual deformation until reaching a 
state close to consolidation did not exceed 0,15 mm, 
with a soil fluidity index of 0,5 ˂ I ˂ 0,75 and a 
deformation modulus Е

g
 = 40 MPa, the residual 

deformation was 0,45 mm.
When watering the soil in the local zone, the value 

of the residual deformation was 0,35 mm, occupying 
an intermediate value, which can be explained by 
the increased resistance of adjacent non-watered 
sections of the roadbed.

4. In the entire range of the axial loads and 
moisture in question, no limit state has been 
reached, at which it is possible to shift the soil masses 
along the slip lines. For all the cases considered, soil 
consolidation was observed, taking into account both 
the ball and deviator stresses in the model.

5. To verify the developed procedure for 
determining residual deformations, it is necessary 
to monitor accumulation of residual deformations in 
the areas of controlled operation of freight cars with 
axle loads of 25 and 27 tf.

REFERENCES
1 . On the strategy for development of rail transport in 

the Russian Federation until 2030 . Order of the Government 
of the Russian Federation of 17 .06 .2008 № 877 r [O strategii 
razvitiya zheleznodorozhnogo transporta v Rossiiskoi 
Federatsii do 2030 goda. Rasporyazhenie pravitelstava RF 
ot 17.06.2008 № 877 r] .

2 . SP 119 .13330 .2012 . Railways of gauge 1520 mm . 
The updated version of SNiP 32-01-95 (with amendment 
No . 1) [SP 119.13330.2012. Zheleznie dorogi kolei 1520 mm. 
Aktualizirovannaya redaktsiya SNiP 32-01-95 (s izm. 
No.1)] . Moscow, 2012, 52 p .

3 . SP 32-104-98 . Designing of a roadbed of railways 
of a track of 1520 mm [SP 32-104-98. Proektirovanie 
zemlyanogo polotna zheleznyh dorog kolei 1520 mm] . 
Moscow, 1999, 90 p .

4 . Lebedev, A . V . Analysis of the state of a roadbed 
[Analiz sostoyaniya zemlyanogo polotna] . Put’ i putevoe 
hozyaistvo, 2017, Iss . 8, pp . 8–11 .

5 . Guidelines for determining the physical and 
mechanical characteristics of ballast materials and soils of 
PMI-36 roadbed . Approved by the department of tracks 
and structures of the Ministry of Railways of the Russian 
Federation of 30 .01 .2004 [Rukovodstvo po opredeleniyu 
fiziko-matematicheskih harakteristik ballastnyh materialov 
i gruntov zemlyanogo polotna PMI-36. Utv. departamentom 
puti i sooruzhenii MPS RF ot 30.01.2004] .

6 . Dalidovskaya, A . A . Design models of soils 
[Raschetnye modeli  gruntov]  .  Scientif ic  leader 
V . G . Pastukhov . In: Design, construction and operation 
of transport facilities: Proceedings of 72nd student scientific-
technical conference . Belarusian National Technical 
University . Minsk, BNTU, 2016, pp . 19–24 .

7 . Duncan, J . M ., Chang, Chin-Yung . Nonlinear 
Analysis of Stress and Strain in Soils . Journal of the Soil 
Mechanics and Foundations Division, 1970, Vol . 96, Iss . 5, 
pp . 1629–1653 .

8 . Development of a verification report on the use of 
the software package ABAGUS for solving the problems 
of the building profile: scientific and technical . report . 
Vol . 1 [Razrabotka verifiktsionnogo otcheta po ispolzovaniyu 
programmnogo kompleksa ABAGUSdlya resheniya zadach 
stroitelnogo profilya: nauchno-tehnicheskiy otchet.T.1] . 
Moscow State University of Civil Engineering . Moscow, 
2013, 268 p .

9 . Strokova, L . A . Determination of parameters for 
numerical simulation of soil behavior [Opredelenie 
parametrov dlya chislennogo modelirovaniya povedeniya 
gruntov] . Tehnologiya i tehnika geologo-razvedochnyh rabot, 
2008, Iss .1, pp . 69–74 .

10 . Brinkgreve, R . B . J ., Vermeer, P . A . A new approach 
to softening plasticity . Proceeding of the 5th International 
Symposium on Numerical Models in Geomechanics 
(Switzerland), 1995, pp . 193–202 .

11 . Schanz, Т ., Vermeer, P . A ., Bonnier P . G . The 
Hardening-Soil Model: Formulation and verification . In: 
Beyond 2000 in Computational Geotechnics . Balkema, 
Rotterdam, 1999, pp . 281–290 .

12 . Сhen, W . F ., Han, D . I . Plasticity for Structural 
Engineers . Springer-Verlag .,  New York ., 1988, 606 p .

13 . Menetrey, Ph ., Willam, K . J . Triaxial Failure 
Criterion for Concrete and its Generalization . ACI 
Structural Journal, 1995, Vol . 92, Iss . 3, pp . 311–318 .

14 . Dydyshko, P . I . Design of a roadbed of a railway 
track: Reference guide [Proektirovanie zemlyanogo polotna 
zheleznodorozhnogo puti: Spravoch. posobie] . Moscow, 
Intext publ ., 2011, 152 p .

15 . Comprehensive comparative studies of the impact 
on the infrastructure of cars with an axial load of up to 
30 tf on Golutvin–Ozery sections of Moscow railway: 
report on the research: I–6–17 [Kompleksnie sravnitelnie 
issledovaniya vozdeistviya na infrastrukturu vagonov s 
osevoi nagruzkoi do 30 ts na uchastkah Golutvin–Ozery 
Moskovskoi zh.d.: otchet o NIR: I–6–17] . VNIKTI JSC . 
Kolomna, 2017, 87 p . 

Information about the authors: 
Kossov, Valery S. – D.Sc. (Eng), professor, general director of JSC VNIKTI, Kolomna, Russia, 
vnikti@ptl-kolomna.ru.
Krasnov, Oleg G. – Ph.D. (Eng), head of the department of JSC VNIIKTI, Kolomna, Russia, 
+7(496) 618-82-48.
Nikonova, Natalia M. – engineer-programmer of I category of JSC VNIKTI, Kolomna, Russia, 
vnikti@ptl-kolomna.ru.

Article received 13.07.2018, accepted 24.08.2018.

Work was made within the project RFFI 17-20–01088. 

•

• WORLD OF TRANSPORT AND TRANSPORTATION, Vol. 16, Iss. 4, pp. 32–50 (2018)

Kossov, Valery S., Krasnov, Oleg G., Nikonova, Natalia M. On Deformability of a Roadbed Active Zone 
under the Influence of a Train with Increased Axial Loads


