SCIENCE AND ENGINEERING

УДК 625.142.1

Математическое моделирование участков переменной жёсткости перед искусственными сооружениями

Валентин ВИНОГРАДОВ Valentin V. VINOGRADOV

Алексей ЛОКТЕВ Alexey A. LOKTEV

Зульфия ФАЗИЛОВА Zulfiya T. FAZILOVA

Виноградов Валентин Васильевич – доктор технических наук, профессор Российского университета транспорта (МИИТ), Москва, Россия. Локтев Алексей Алексеевич — доктор физико-математических наук, профессор, заведующий кафедрой транспортного строительства РУТ (МИИТ), Москва, Россия, Фазилова Зульфия Тельмановна — кандидат технических наук, доцент РУТ (МИИТ), Москва, Россия.

Mathematical Modeling of Sections of Variable Rigidity in Front of Artificial Structures (текст статьи на англ. яз. – English text of the article – р. 80)

В статье рассматриваются особенности переходной зоны с балластного подшпального основания на мостовое сооружение с различными типами пролётных строений, а также сопряжённые с зоной участки безбалластного пути. Предложена аналитическая модель для описания динамического поведения железнодорожного пути в виде трансверсально-изотропной пластины с переменными параметрами жёсткости. Приведены примеры использования предложенной модели для вычисления динамической осадки земляного полотна под воздействием подвижного состава с разными грузовыми и скоростными характеристиками.

Ключевые слова: железная дорога, мост, земляное полотно, остаточная деформация, участок переменной жёсткости, осадка пути, уклон, упругая волна, профиль пути, трансверсально-изотропная пластина. ри реконструкции участков железных дорог для организации скоростного движения поездов должны быть ликвидированы все проблемные места, которые могут стать источниками больших расстройств пути и возможных ограничений скоростного режима.

Одним из таких объектов является зона примыкания железнодорожного пути на земляном полотне к мосту. Путь на самом мосту достаточно стабилен и не имеет больших просадок, в то время как на земляном полотне в зоне полходов имеет осадку. С целью снижения потенциальной опасности необходимо усиление пути в этой зоне. Для плавного сопряжения проблемных мест на подхолах и мостах с балластной и безбалластной конструкцией полотна устраиваются переходные участки с переменной жёсткостью таким образом, чтобы вертикальная жёсткость на мосту и подходной насыпи не сильно отличались друг от друга.

Рис. 1. Участок сопряжения конструкций разной жёсткости.

1.

Длина переходного участка железнодорожного пути с переменной жёсткостью на подходе к мосту определяется для каждого объекта длиной зоны расстройств железнодорожного пути. Помогают в этом данные вагона-путеизмерителя или результаты испытаний нагрузочными поездами.

В таблице 1 приведена минимальная длина участка с переменной жёсткостью на подходе к мосту в зависимости от скорости движения поездов [1].

В исследованиях, проводимых Holland Railconsult [2], длина влияния переходной зоны может быть определена с помощью так называемого правила «одной секунды». В этом случае, к примеру, при скорости движения поезда 200 км/ч длина зоны составит 55 м.

При прохождении подвижного состава по участку перегиба, возникшего в процессе осадки пути, оказывается дополнительное динамическое воздействие на колёсную пару, величина которого зависит от величины перепада (угла) в зоне перехода (рис. 1). Повышенная вибродинамическая нагрузка приводит к повышенному износу элементов верхнего строения пути и появлению дефектов в верхних слоях земляного полотна.

Интенсивность воздействия вибродинамической нагрузки от подвижного состава можно рассчитать по формуле:

$$\rho_0 = \frac{1.3P_n}{l_{xcb}b_0},\tag{1}$$

где Р – осевая нагрузка расчётной подвижной единицы, кН;

- n число осей в тележке;
- l_{жб} длина жёсткой базы тележки, м;
- b₀ длина шпалы, м (при железобетон-

ных шпалах – 2,7 м, при деревянных – 2,75 м).

Существует множество методов и вычислительных алгоритмов, чтобы решать задачи расчёта конструкций, их элементов и целых сооружений на различные виды прилагаемой нагрузки, но наиболее актуальны методики, позволяющие учесть не только динамику в приложении нагрузки, но и динамику в изменениях деформационных и силовых характеристик конструкции пути и основания [3].

Имея данные натурных наблюдений, можно построить математическую модель участка переменной жёсткости с использованием численных методов в программной среде с помощью ЭВМ и получить пакет функциональных требований и стандартов для переходных конструкций.

В большинстве современных вычислительных комплексов (ПК Лира, Мираж, SCAD, Ansys, Abaqus, Nastran, Lusas и др.) преимущество отдаётся методам конечных и граничных элементов [4–6].

Метод конечных элементов заменяет задачу нахождения функции на задачу нахождения окончательного числа наиболее её точных значений в разных узловых точках. Первичная задача касательно функции строится из функционального уравнения, задача метода конечных элементов относитель-

Таблица 1

Минимальная длина участка переменной жёсткости

№ пп.	Минимальная длина участ- ка, м	Максимальная скорость движения поездов, км/ч
1	15	менее 80
2	20	80-120
3	25	более 120

● МИР ТРАНСПОРТА, том 16, № 3, С. 72-85 (2018)

но её значений в узлах предполагает нарушение системы алгебраических уравнений. С занижением максимального размера составляющих элементов добавляется количество узлов и искомых узловых параметров. При этом увеличивается шанс наиболее точно приблизиться к условиям задачи и подойти вплотную к искомому результату.

2.

В нашем варианте железнодорожный путь предлагается представить упругой ортотропной пластинкой [3, 4, 7], динамическое поведение которой описывается уравнениями типа Уфлянда—Миндлина—Рейснера, учитывающими инерцию вращения поперечных сечений и деформацию поперечного сдвига [8, 9]. Поскольку движение транспортного средства в прямом участке представляет собой фактически осесимметричную задачу, то и определяющие уравнения можно представить в общем виде, когда волновые характеристики не зависят от угла θ [10]:

$$D_{r}\left(\frac{\partial^{2}\varphi}{\partial r^{2}} + \frac{1}{r}\frac{\partial\varphi}{\partial r}\right) - D_{\theta}\frac{\varphi}{r^{2}} + hKG_{r_{c}}\left(\frac{\partial w}{\partial r} - \varphi\right) = -\rho\frac{h^{3}}{12}\frac{\partial^{2}\varphi}{\partial t^{2}},$$
(2)

$$KG_{r_{z}}\left(\frac{\partial^{2}w}{\partial r^{2}}-\frac{\partial\varphi}{\partial r}\right)+KG_{r_{z}}\frac{1}{r}\left(\frac{\partial w}{\partial r}-\varphi\right)=\rho\frac{\partial^{2}w}{\partial t^{2}},$$
(3)

$$C_r \left(\frac{\partial^2 u}{\partial r^2} + \frac{1}{r} \frac{\partial u}{\partial r} \right) - C_\theta \frac{u}{r^2} = \rho h \frac{\partial^2 u}{\partial t^2}, \tag{4}$$

$$C_{k}\left(\frac{\partial^{2}v}{\partial r^{2}} + \frac{1}{r}\frac{\partial v}{\partial r} - \frac{v}{r^{2}}\right) = \rho h \frac{\partial^{2}v}{\partial t^{2}},$$
(5)

$$D_{k}\left(\frac{\partial^{2}\psi}{\partial r^{2}} + \frac{1}{r}\frac{\partial\psi}{\partial r} - \frac{\psi}{r^{2}}\right) - KhG_{\theta z}\psi = -\rho\frac{h^{3}}{12}\frac{\partial^{2}\psi}{\partial t^{2}},\qquad(6)$$

где

$$\begin{split} D_r &= \frac{h^3}{12} B_r, \quad D_\theta = \frac{h^3}{12} B_\theta, \quad D_k = \frac{h^3}{12} B_k, \\ C_r &= h B_r, \quad C_\theta = h B_\theta, \quad C_k = h B_k, \\ D_{r\theta} &= D_r \sigma_\theta + 2 D_k, \\ B_r &= \frac{E_r}{1 - \sigma_r \sigma_\theta}, \quad B_\theta = \frac{E_\theta}{1 - \sigma_r \sigma_\theta}, \quad B_k = G_{r\theta}, \\ E_r \sigma_r &= E_\theta \sigma_\theta, \quad K = \frac{5}{6}; \quad D_r, \quad D_\theta \in C_r, \quad C_\theta - \text{COOTBET-} \end{split}$$

ственно жёсткости изгиба и растяжениясжатия для направлений г, θ ; $D_k -$ жёсткость кручения; $C_k -$ жёсткость сдвига; E_r , E_{θ} и σ_r , $\sigma_{\theta} -$ модуль упругости и коэффициент Пуассона для направлений г, θ ; G_{rz} , $G_{\theta z} -$ модуль сдвига в плоскостях гz и θz соответственно; w(r, θ) – нормальное перемещение срединной плоскости; $u(r, \theta)$ и $v(r, \theta)$ – тангенциальные перемещения срединной поверхности соответственно по координатам r, θ ; $\phi(r, \theta)$ и $\psi(r, \theta)$ – произвольные искомые функции координат r, θ .

Если рассмотреть деформирование безбалластного пути, то предлагаемую модель можно упростить, приняв, что плита основания может быть представлена трансверсально-изотропной пластиной, лежащей на деформируемом основании, два края которой жёстко закреплены (вдоль пути, по направлению рельс), а два других — шарнирно опёрты (поперёк пути, по направлению шпал) [11–13]. В этом случае пластина в недеформируемом состоянии занимает область $\{0 \le x \le l_1; 0 \le y \le l_2; -h \le z \le h\}$. Для

полного моделирования динамического поведения и расчёта по первой и второй группе предельных состояний железобетонной плиты необходимо первоначальную задачу представить в виде совокупности более простых, и первой в этом ряду является задача определения собственных колебаний пластины. Уравнение, описывающее собственные поперечные колебания пластины, можно получить из соотношений (2)–(6) и записать в виде[15]:

$$A_{1}\frac{\partial^{2}W}{\partial t^{2}} + A_{2}\frac{\partial^{4}W}{\partial t^{4}} - A_{3}\frac{\partial^{2}}{\partial t^{2}}\Delta W + A_{4}\Delta^{2}W + P(W) = 0, \quad (7)$$

где W — поперечное смещение точек срединной плоскости пластины, Δ — оператор Лапласа.

$$A_{1} = \rho_{1}; A_{2} = \rho_{1}^{2} \left(A_{33}^{-1} + 3A_{44}^{-1} \right) \frac{h^{2}}{b}; A_{3} = \\ = \left\{ -\rho_{1} \left[2 - 2A_{11}A_{33}^{-1} - 3\left(A_{13}^{2} - A_{11}A_{33}\right)A_{33}^{-1}A_{44}^{-1} \right] \right\} \frac{h^{2}}{b}; \\ A_{4} = 2A_{33}^{-1} \left(A_{11}A_{33} - A_{13}^{2} \right) \frac{h^{2}}{b}; A_{5} = \frac{S}{2h}\rho_{1}; A_{6} = \\ = \frac{S}{2h}\rho_{1}\frac{h^{2}}{2} \left(\rho_{1}A_{44}^{-1} + 3A_{33}^{-1} \right); A_{7} = -4\frac{S}{2h}\rho_{1}A_{11}A_{33}^{-1}.$$
(8)

В этих соотношениях величина $P(W) = A_5 \frac{\partial W}{\partial t} + A_6 \frac{\partial^3 W}{\partial t^3} + A_7 \Delta \frac{\partial W}{\partial t} - \text{она опреде-}$

ляет реакцию основания, ρ_1 — плотность, b — скорость поперечной волны; $A_{11} = A_{13} = ... = A_{nm}$ — коэффициенты анизотропии материала пластины.

Граничные условия для задачи деформирования пластины за счёт поперечных колебаний в данной постановке могут быть представлены в виде [16, 17]:

● МИР ТРАНСПОРТА, том 16, № 3, С. 72-85 (2018)

Виноградов В. В., Локтев А. А., Фазилова З. Т. Математическое моделирование участков переменной жёсткости перед искусственными сооружениями

$$W = \frac{\partial^2 W}{\partial x^2} = 0; x = 0, l_1;$$

$$W = \frac{\partial W}{\partial y} = 0; y = 0, l_2.$$
(9)

Решение однородного уравнения (7) предлагается искать в следующем виде:

$$W(x, y, t) = W(x, y) \exp\left(\xi \frac{bt}{h}\right), \qquad (10)$$

где ξ – частота собственных колебаний пластины.

После подстановки (10) в (7) получим:

$$A_{l}W(x,y)\left(\frac{b\xi}{h}\right)^{2}\exp\left(\xi\frac{bt}{h}\right) +$$

$$+A_{2}W(x,y)\left(\frac{b\xi}{h}\right)^{4}\exp\left(\xi\frac{bt}{h}\right) -$$

$$-A_{3}\Delta W(x,y)\left(\frac{b\xi}{h}\right)^{2}\exp\left(\xi\frac{bt}{h}\right) +$$

$$+A_{4}\Delta^{2}W(x,y)\exp\left(\xi\frac{bt}{h}\right) +$$

$$+A_{5}W(x,y)\left(\frac{b\xi}{h}\right)\exp\left(\xi\frac{bt}{h}\right) +$$

$$+A_{6}W(x,y)\left(\frac{b\xi}{h}\right)^{3}\exp\left(\xi\frac{bt}{h}\right) +$$

$$+A_{6}W(x,y)\left(\frac{b\xi}{h}\right)\exp\left(\xi\frac{bt}{h}\right) = 0.$$
(11)

Для удобства работы с математической моделью пластины целесообразно использовать безразмерные величины $x = \frac{l_1}{\pi} \alpha$;

 $y = \frac{l_2}{\pi}\beta$, с помощью которых определяющее уравнение (11) можно представить в следующем виде:

$$V(\alpha,\beta) \begin{pmatrix} \left(\frac{\partial^4}{\partial \alpha^4} + 2\frac{l_1^2}{l_2^2}\frac{\partial^4}{\partial \alpha^2 \partial \beta^2} + \frac{l_1^4}{l_2^4}\frac{\partial^4}{\partial \beta^4}\right) + \\ B_1\left(\frac{l_1^2}{\pi^2}\frac{\partial^2}{\partial \alpha^2} + \frac{l_1^4}{\pi^2 l_2^2}\frac{\partial^2}{\partial \beta^2}\right) + B_2\frac{l_1^4}{\pi^4} \end{pmatrix} = 0.$$
(12)

Здесь приняты обозначения:

$$B_{1} = \frac{1}{A_{4}} \left(-A_{3} \left(\frac{b\xi}{h} \right)^{2} + A_{7} \left(\frac{b\xi}{h} \right) \right);$$

$$B_{2} = \frac{1}{A_{4}} \left(A_{1} \left(\frac{b\xi}{h} \right)^{2} + A_{2} \left(\frac{b\xi}{h} \right)^{4} + A_{5} \left(\frac{b\xi}{h} \right)^{2} + A_{6} \left(\frac{b\xi}{h} \right)^{3} \right).$$

Для решения уравнения (12) предлагается использовать метод декомпозиций [18], он позволяет рассмотреть отдельно три вспомогательные задачи, объединив полученные результаты.

1.
$$\frac{\partial^4 V_1}{\partial \alpha^4} = f_1(\alpha, \beta) V_1 = \frac{\partial V_1}{\partial \alpha} = 0 \ \alpha = 0, \pi.$$

2.
$$\eta^{4} \frac{\partial^{4} V_{2}}{\partial \beta^{4}} = f_{2}(\alpha, \beta) V_{2} = \frac{\partial V_{2}}{\partial \beta} = 0 \beta = 0, \pi. \quad (13)$$
3.
$$\begin{bmatrix} 2\eta^{2} \frac{\partial^{4}}{\partial \alpha^{2} \partial \beta^{2}} + \\ +B_{1} \frac{l_{1}^{2}}{\pi^{2}} \left(\frac{\partial^{2}}{\partial \alpha^{2}} + \eta^{2} \frac{\partial^{2}}{\partial \beta^{2}} \right) + B_{2} \frac{l_{1}^{4}}{\pi^{4}} \end{bmatrix} V_{3} + f_{1} + f_{2} = 0.$$

Здесь

$$\eta = l_1/l_2$$
, $f_i(\alpha, \beta) = \sum_{n,m=1}^{\infty} a_{n,m}^{(i)} \sin(n\alpha) \sin(m\beta)$ -

произвольные функции в общем виде; $a_{n,m}^{(i)}$ — произвольные постоянные, i = 1, 2.

При определении динамических характеристик поведения пути с учётом собственных колебаний для заданных точек конструкции можно предположить, что приближённо будут выполняться следующие соотношения:

$$V_1 \cong V_2; V_3 = \frac{1}{2} (V_1 + V_2).$$
 (14)

Общее решение вспомогательных задач (13) предлагается искать в вариантах:

$$V_{1}(\alpha,\beta) = \sum_{n,m=1}^{\infty} \frac{a_{n,m}^{(1)}}{n^{4}} \sin(n\alpha) \sin(m\beta) +$$

$$+ \frac{\alpha^{3}}{6} \psi_{1}(\beta) + \frac{\alpha^{2}}{2} \psi_{2}(\beta) + \alpha \psi_{3}(\beta) + \psi_{4}(\beta);$$

$$V_{2}(\alpha,\beta) = \sum_{n,m=1}^{\infty} \frac{a_{n,m}^{(2)}}{\eta^{4} m^{4}} \sin(n\alpha) \sin(m\beta) +$$

$$+ \frac{\beta^{3}}{6} \phi_{1}(\alpha) + \frac{\beta^{2}}{2} \phi_{2}(\alpha) + \beta \phi_{3}(\alpha) + \phi_{4}(\alpha),$$
(15)

где $\psi_i(\beta)$ и $\phi_i(\alpha)$ — некоторые произвольные функции, для определения которых необходимо учесть граничные условия (9) и дефрагментацию общей задачи (13).

Определяя $\psi_i(\beta)$ и $\phi_i(\alpha)$, получим:

при
$$\underline{\alpha} = \underline{0}$$

 $V_1(\alpha, \beta) = \psi_4(\beta) = 0, \quad \frac{\partial^2 V_1}{\partial \alpha^2} = \psi_2(\beta) = 0;$ (16)

при
$$\underline{\alpha} = \underline{\varpi}$$

 $\psi_1(\beta) = 0, \psi_3(\beta) = 0,$
 $V_1(\alpha, \beta) = \sum_{n,m=1}^{\infty} \frac{a_{n,m}^{(1)}}{n^4} \sin(n\alpha) \sin(m\beta);$ (17)

при <u>β = 0</u>

$$V_{2}(\alpha,\beta) = \phi_{4}(\alpha) = 0, \ \phi_{3}(\alpha) = -\sum_{n,m=1}^{\infty} \frac{a_{n,m}^{(2)}}{\eta^{4}m^{3}} \sin(n\alpha); \ (18)$$

$$\Pi p_{H} \underline{\beta} = \underline{\varpi}$$

$$\phi_{1}(\alpha) = -\frac{6}{\pi^{2}} \sum_{n,m=1}^{\infty} \frac{a_{n,m}^{(2)}}{\eta^{4} m^{3}} \sin(n\alpha) ((-1)^{m} + 1),$$

$$\phi_{2}(\alpha) = \frac{2}{\pi} \sum_{n,m=1}^{\infty} \frac{a_{n,m}^{(2)}}{\eta^{4} m^{3}} \sin(n\alpha) ((-1)^{m} + 2),$$
(19)

75

● МИР ТРАНСПОРТА, том 16, № 3, С. 72-85 (2018)

Рис. 3. Зависимость динамического прогиба от времени для различных значений соотношения E_a/E_r .

$$V_{2}(\alpha,\beta) = \sum_{n,m=1}^{\infty} \frac{a_{n,m}^{(2)}}{\eta^{4}m^{3}} \sin(n\alpha) \begin{pmatrix} \frac{1}{m}\sin(m\beta) - \\ -\frac{\beta^{3}}{\pi^{2}}((-1)^{m}+1) + \\ +\frac{\beta^{2}}{\pi}((-1)^{m}+2) - \beta \end{pmatrix}.$$

В итоге из (13) имеем следующую систему уравнений:

$$V_{1} - V_{2} = 0,$$

$$V_{3} = \frac{1}{2} (V_{2} + V_{1}),$$

$$\begin{bmatrix} 2\eta^{2} \frac{\partial^{4}}{\partial \alpha^{2} \partial \beta^{2}} + \\ +B_{1} \frac{l_{1}^{2}}{\pi^{2}} \left(\frac{\partial^{2}}{\partial \alpha^{2}} + \eta^{2} \frac{\partial^{2}}{\partial \beta^{2}} \right) + \\ +B_{2} \frac{l_{1}^{4}}{\pi^{4}} \end{bmatrix} V_{3} + f_{1} + f_{2} = 0.$$
(20)

Рис. 5. Зависимость максимального прогиба от соотношения E_{a}/E_{r} для различных значений \tilde{E} .

Рис. 4. Зависимость динамического прогиба от времени для различных значений соотношения $G_{\rm rc}/E_{\rm r}$.

При *n*,*m*=1 из (20) фиксируем соотношения:

$$\begin{cases} a_{11}^{(1)}\sin(\alpha)\sin(\beta) - \frac{a_{11}^{(2)}}{\eta^4}\sin(\alpha)\left(\sin(\beta) + \frac{\beta^2}{\pi} - \beta\right) = 0, \\ \left[2\eta^2 \frac{\partial^4}{\partial \alpha^2 \partial \beta^2} + B_1 \frac{l_1^2}{\pi^2} \left(\frac{\partial^2}{\partial \alpha^2} + \eta^2 \frac{\partial^2}{\partial \beta^2}\right) + B_2 \frac{l_1^4}{\pi^4}\right] \frac{1}{2} \cdot \left(a_{11}^{(1)}\sin(\alpha)\sin(\beta) + \frac{a_{11}^{(2)}}{\eta^4}\sin(\alpha)\left(\sin(\beta) + \frac{\beta^2}{\pi} - \beta\right)\right) + a_{11}^{(1)}\sin(\alpha)\sin(\beta) + a_{11}^{(2)}\sin(\alpha)\sin(\beta) = 0. \end{cases}$$

Полагая $\alpha = \beta = \frac{\pi}{2}$ в предыдущих соотно-

шениях, получим систему уравнений, которая имеет ненулевое решение только в случае равенства нулю своего главного определителя:

$$B_{1} \frac{l_{1}^{2}}{\pi^{2} \eta^{2}} \left[\left(\frac{1}{\eta^{2}} + \frac{1}{2} \right) \left(1 - \frac{\pi}{4} \right) - \left(\frac{2}{\pi} - 1 \right) \right] - B_{2} \frac{l_{1}^{4}}{\pi^{4} \eta^{4}} \left(1 - \frac{\pi}{4} \right) - \frac{1}{\eta^{4}} \left(2 - \frac{\pi}{4} - \frac{2}{\pi} \right) - 1 = 0.$$
(21)

Если в (21) подставить выражения для B_1 и B_2 , то получим:

$$\frac{1}{A_{4}} \begin{pmatrix} -A_{3} \left(\frac{\xi b}{h}\right)^{2} + \\ +A_{7} \left(\frac{\xi b}{h}\right)^{2} + \\ \frac{l_{1}^{2}}{\pi^{2} \eta^{2}} \begin{bmatrix} \left(\frac{1}{\eta^{2}} + \frac{1}{2}\right) \left(1 - \frac{\pi}{4}\right) - \\ -\left(\frac{2}{\pi} - 1\right) \end{bmatrix} - \\ -\frac{1}{A_{4}} \begin{pmatrix} A_{2} \left(\frac{\xi b}{h}\right)^{4} + A_{6} \left(\frac{\xi b}{h}\right)^{3} + \\ +A_{6} \left(\frac{\xi b}{h}\right)^{2} + A_{5} \left(\frac{\xi b}{h}\right) \end{bmatrix} + \\ \frac{l_{1}^{4}}{\pi^{4} \eta^{4}} \left(1 - \frac{\pi}{4}\right) - \\ -\frac{1}{\eta^{4}} \left(2 - \frac{\pi}{4} - \frac{2}{\pi}\right) - 1 = 0.$$
(22)

Уравнение (22) можно представить в виде алгебраического уравнения четвёртого

● МИР ТРАНСПОРТА, том 16, № 3, С. 72-85 (2018)

Рис. 6. Зависимость динамического прогиба в месте удара от времени для различных значений в направлениях анизотропии: а) модулей деформации, б) модулей сдвига.

порядка, неизвестным в котором является частота собственных колебаний безбалластного пути

$$d_1\xi^4 + d_2\xi^3 + d_3\xi^2 + d_4\xi + d_5 = 0.$$
(23)

Здесь приняты следующие обозначения коэффициентов при неизвестных:

$$\begin{split} &d_{1} = -\frac{A_{2}}{A_{4}} \frac{l_{1}^{4}}{\pi^{4} \eta^{4}} \left(1 - \frac{\pi}{4}\right) \left(\frac{b}{h}\right)^{4}, \\ &d_{2} = -\frac{A_{6}}{A_{4}} \frac{l_{1}^{4}}{\pi^{4} \eta^{4}} \left(1 - \frac{\pi}{4}\right) \left(\frac{b}{h}\right)^{3}, \\ &d_{3} = \frac{l_{1}^{2}}{A_{4} \pi^{2} \eta^{2}} \begin{cases} A_{3} \left[\left(\frac{1}{\eta^{2}} + \frac{1}{2}\right) \left(1 - \frac{\pi}{4}\right) + \frac{1}{2} - \frac{1}{\pi}\right]^{-} \right] \\ &-A_{1} \frac{l_{1}^{2}}{\pi^{2} \eta^{2}} \left(1 - \frac{\pi}{4}\right) \end{cases} \begin{cases} \left(\frac{b}{h}\right)^{2}, \\ &-A_{1} \frac{l_{1}^{2}}{\pi^{2} \eta^{2}} \left(1 - \frac{\pi}{4}\right) \end{cases} \end{cases} \\ &d_{4} = \frac{l_{1}^{2}}{A_{4} \pi^{2} \eta^{2}} \left\{ \frac{A_{7}}{2} \left[\frac{1}{2} - \frac{1}{\pi} + \\ &+ \frac{3}{2} \left(1 - \frac{\pi}{4}\right) \right] - A_{5} \frac{l_{1}^{2}}{\pi^{2} \eta^{2}} \left(1 - \frac{\pi}{4}\right) \right\} \left(\frac{b}{h}\right), \\ &d_{5} = \frac{1}{\eta^{2}} \left[\left(-1 + \frac{\pi}{4} \right) \left(1 + \frac{1}{\eta^{2}} \right)^{-} \\ &-1 + \frac{2}{\pi} \end{bmatrix} - 1. \end{split}$$

Решая уравнение (23), можно определить частоты собственных колебаний железнодорожного пути, что, в свою очередь, позволит определить динамическое нормальное перемещение точек как верхнего строения пути [19, 20], так и плиты безбалластного основания по формуле (10).

3.

Традиционные способы расчёта параметров поведения железнодорожного пути как из-за движения транспортных средств, так и по причине собственных колебаний не позволяют в полной мере учесть анизотропные свойства конструкции пути, особенно безбалластного, в прямых и кривых участках [7, 15, 21].

Нами исследованы полученные данные и построены графические зависимости динамического прогиба, который моделируется трансверсально-изотропной пластинкой, от времени для различных соотношений модулей упругости и модулей сдвига

● МИР ТРАНСПОРТА, том 16, № 3, С. 72-85 (2018)

[13, 22]. Параметры динамического воздействия транспортного средства на путь принимают следующие значения: m = 25 т, h = 500 мм, $V_0 = 20$ м/с, $\rho = 7850$ кг/м³.

Используя соотношения (10) для динамического прогиба, записанного в безразмерном виде, получаем графики зависимостей динамических характеристик от времени [12, 23].

На рис. З приведены зависимости динамического прогиба верхнего пути от времени для различных значений соотношения E_{θ}/E_r (отношение приведённых модулей упругости в направлении шпалы и рельса соответственно), которые указаны цифрами у кривых. Рассматривается влияние анизотропных свойств плиты безбалластного основания на характеристики динамического воздействия: при уменьшении соотношения E_{θ}/E_r про-

исходит увеличение прогиба-просадки до некоторого значения при $E_{\theta}/E_r < 1$; при увеличении E_{θ}/E_r происходит уменьшение прогиба, поскольку последний член отрезка

прогиоа, поскольку последнии член отрезка ряда, полученного из (10), уменьшается при росте соотношения $E_{\theta}/E_r > 1$.

На рис. 4 обозначены осадки безбалластного пути исходя из предположения, что он обладает трансверсально-изотропными свойствами для различных модулей сдвига в направлении, перпендикулярном плоскости насыпи ($G_{r_{\pi}}$), для различных соотношений

модуля сдвига в направлении, перпендикулярном нитке рельсов, и модуля деформации в направлении нитки. Значения G_{r_z}/E_r по-

казаны цифрами у кривых, при $G_{rz}/E_r = 0.54$

балластная призма обладает изотропными свойствами. Из рис. 4 видно, что увеличение значения соотношения модулей G_{rz}/E_r при-

водит к уменьшению прогиба-осадки.

Пунктиром на рис. 3 и рис. 4 показана осадка, определённая экспериментально на подходе к мосту через реку Горючка (чётный путь), мосту, расположенному на участке Саратов—Колоцкий 56 км ПК6. Путём сравнения с кривыми, полученными теоретически по предложенной модели, можно оценить приведённые жёсткости (модули упругости и сдвига) рассматриваемого пути на подходе к мосту. В итоге наблюдается хорошее совпадение результатов эксперимента и аналитического расчёта по наибольшей величине прогиба и по длительности деформирования пути, только вначале экспериментальная зависимость ведёт себя более линейно, чем теоретическая.

На рис. 5 приведены зависимости максимального прогиба от соотношения E/Eдля различных значений приведённого модуля деформации верхнего строения пути \tilde{E} : кривая 1 соответствует $\tilde{E} = 3,6 \cdot 10^{-6}$, кривая 2 – $\tilde{E} = 2,5 \cdot 10^{-6}$, кривая 3 – $\tilde{E} =$ 1,4 · 10⁻⁶. Из рис. 5 следует, что максимальный прогиб уменьшается с увеличением соотношения E_{θ}/E_r и увеличивается с увеличением линейной жёсткости контакта колесо–рельс \tilde{E} . Столь же ясно, что при увеличении отношения E_{θ}/E_r динамический прогиб уменьшается для всех рассмотренных соотношений контактной жёсткости колесо–рельс.

Одновременно были определены перемещения основания плиты безбалластного пути в зоне её соприкосновения с грунтом насыпи.

На рис. 6а показано, что при снижении модулей упругости E_r и E_{θ} максимальное значение динамического прогиба увеличивается, а E_r оказывает наибольшее влияние на прогиб. При снижении значений модулей сдвига прогиб возрастает, при этом, как фиксирует график рис. 6б, $G_{\theta z}$ более остальных параметров оказывает влияние на динамиче-

параметров оказывает влияние на динамический прогиб мишени.

При снижении G_{r_z}, G_{θ_z} наибольший про-

гиб и время, в течение которого прогиб приравнивается к нулю, возрастают пропорционально, а при снижении $G_{r\theta}$ время, относя-

щееся к нулевому прогибу, возрастает интенсивнее, т.е. восстановление земляного полотна будет проходить медленнее.

Сравнивая графические зависимости для динамической осадки, можно подобрать механические характеристики насыпи с анизотропными свойствами (перебором различных конструкций для переходных участков переменной жёсткости) таким образом, чтобы добиться уменьшения осадки до уровня, необходимого для движения состава с заданной скоростью, а также максимальной силы, при которой не будет наблюдаться дефектов полотна.

● МИР ТРАНСПОРТА, том 16, № 3, С. 72-85 (2018)

выводы

Анализируя и сравнивая полученные теоретические зависимости для различных величин механических параметров земляного полотна с расчётными данными, нетрудно обнаружить, что изменением механических параметров грунта можно как повысить, так и понизить деформацию железнодорожного пути. Высокое соответствие данных математического моделирования и экспериментальных исследований даёт возможность рекомендовать предлагаемую методику в качестве средства решения задач, обеспечивающих стабильность поведения железнодорожного пути при эксплуатации существующих линий и при проектировании высокоскоростных магистралей.

ЛИТЕРАТУРА

1. Инструкция по применению конструктивнотехнологических решений переходных участков на подходах к искусственным сооружениям для участков скоростного совмещённого движения. Утверждена распоряжением ОАО «РЖД» от 20.12.2013 г. № 2754р.

2. Coelho, B., Priest, J., Hölscher, P., Powrie, W. Monitoring of transition zones in railways, 10th International Conference and Exhibition on railway engineering, London, 24–25 June, 2009.

3. Коншин Г. Г. Работа земляного полотна под поездами. – М.: УМЦ по образованию на ж. д. транспорте, 2012. – 208 с.

4. Локтев А. А., Виноградов В. В., Бучкин В. А. Модели взаимодействия колеса и рельса при высоких скоростях движения // Мир транспорта. – 2016. – № 1. – С. 54–60.

5. Loktev A., Sychev V., Gridasova E. and Stepanov R. Mathematical Modeling of Railway Track Structure under Changing Rigidity Parameters // Nonlinearity. Problems, Solutions and Applications. V.1. Theoretical and Applied Mathematics. – 2017. – Pp. 291–307.

6. Киселёв Ф. Б., Мансуров А. Р., Рамазанов М. И. Моделирование динамического воздействия подвижного состава на основание железнодорожной насыпи с цилиндрической полостью // Внедрение современных конструкций и передовых технологий в путевое хозяйство. – 2016. – № 10. – С. 37–45.

7. Абдурашитов А. Ю., Сычёв В. П., Абдурашитов Ю. А. Выбор моделей напряжённо-деформированного состояния железнодорожных рельсов при различных вариантах их закаливания // Внедрение современных конструкций и передовых технологий в путевое хозяйство. – 2016. – № 10. – С. 64–79.

8. Локтев А. А. Ударное взаимодействие твёрдого тела и упругой ортотропной пластинки // Механика композиционных материалов и конструкций. — 2005. – № 4. – С. 478–492.

9. Loktev A. A., Sychev V. P. Vinogradov V. V., Buchkin V. A. Modelling of the Dynamic Contact between a Wheel of a Moving Railway Vehicle and Rails with Evaluation of Defects Emerging upon Their Interaction. Part 1. The Defects of the Rail and Models of Contact // Applied Mathematical Sciences. -2017. - Vol. 11. -No. 10. - Pp. 473–480.

10. Сычёв В. П., Новожилов Т. В. Исследование влияния на работу железнодорожного пути демпфирующих подкладок под рельсы и шпалы // Наука и техника транспорта. – 2016. – № 1. – С. 63–68.

 Залетдинов А. В., Локтев А. А., Сычева А. В., Запольнова Е. В. Выбор мест усиления земляного полотна // Путь и путевое хозяйство. – 2015. – № 3. – С. 15–18.

12. Agostinacchio M., Ciampa D., Diomedi M., Olita S. Parametrical analysis of the railways dynamic response at high speed moving loads. Journal of Modern Transportation. – 2013. – Vol. 21. – No. 3. – Pp. 169–181.

13. Phillips J. W., Calvit H. H. Impact of a rigid sphere on a viscoelastic plate // Transaction of the ASME, Journal of Applied Mechanics. – 1967. – Vol. 34. – No. 4. – Pp. 873–878.

14. Старишкин В. В., Фазилова З. Т. Участки переходной жёсткости в зоне примыкания к мостам с балластной и безбалластной конструкцией пути // Внедрение современных конструкций и передовых технологий в путевое хозяйство. — 2017. — № 11. — С. 16—20.

15. Chen P., Xiong J., Shen Z. Thickness effect on the contact behavior of a composite laminate indented by a rigid sphere. Mechanics of Materials. – 2008. – Vol. 40. – Pp. 183–194.

16. Сычева А. В., Сычев В. П., Бучкин В. А., Быков Ю. А. Моделирование работы железнодорожного пути как системы квазиупругих ортотропных слоёв // Вестник МГСУ. – 2016. – № 3. – С. 37–46.

17. Malekzadeh K., Khalili M. R., Mittal R. K. Response of composite sandwich panels with transversely flexible core to low-velocity transverse impact: A new dynamic model. Int. J. of Impact Engineering. – 2007. – Vol. 34. – P. 522–543.

18. Локтев А. А. Удар вязкоупругого тела по упругой изотропной пластинке // Механика композиционных материалов и конструкций. — 2007. — № 3. — С. 417—425.

19. Вершинин В. В., Локтев А. А. Моделирование систем противоударной изоляции с вязкоупругими элементами // Вестник МГТУ им. Баумана. Серия Естественные науки. – 2012. – № 2. – С. 52–67.

20. Локтев А. А. Упругопластическая модель взаимодействия цилиндрического ударника и пластинки // Письма в Журнал технической физики. – 2007. – № 16. – С. 72–77.

21. Локтев А. А., Бахтин В. Ф., Черников И. Ю., Локтев Д. А. Методика определения внешних дефектов сооружения путём анализа серии его изображений в системе мониторинга // Вестник МГСУ. – 2015. – № 3. – С. 7–16.

22. Алфимцев А. Н., Локтев Д. А., Локтев А. А. Сравнение методологий разработки систем интеллектуального взаимодействия // Вестник МГСУ. – 2013. – № 5. – С. 200–208.

23. Локтев А. А., Сычева А. В., Талашкин Г. Н., Степанов К. Д. Разработка математической модели железнодорожного пути переменной жёсткости // Внедрение современных конструкций и передовых технологий в путевое хозяйство. – 2016. – № 9. – С. 26–38.

Координаты авторов: **Виноградов В. В.** – +7(495) 684–21–10, **Локтев А. А.** – aaloktev@yandex.ru, **Фазилова З. Т.** – fazil_1905@mail.ru.

Статья поступила в редакцию 22.03.2018, принята к публикации 19.05.2018.

● МИР ТРАНСПОРТА, том 16, № 3, С. 72-85 (2018)